Abstract:We introduce a fully automatic pipeline for dynamic scene reconstruction from casually captured monocular RGB videos. Rather than designing a new scene representation, we enhance the priors that drive Dynamic Gaussian Splatting. Video segmentation combined with epipolar-error maps yields object-level masks that closely follow thin structures; these masks (i) guide an object-depth loss that sharpens the consistent video depth, and (ii) support skeleton-based sampling plus mask-guided re-identification to produce reliable, comprehensive 2-D tracks. Two additional objectives embed the refined priors in the reconstruction stage: a virtual-view depth loss removes floaters, and a scaffold-projection loss ties motion nodes to the tracks, preserving fine geometry and coherent motion. The resulting system surpasses previous monocular dynamic scene reconstruction methods and delivers visibly superior renderings




Abstract:Three-dimensional scene inpainting is crucial for applications from virtual reality to architectural visualization, yet existing methods struggle with view consistency and geometric accuracy in 360{\deg} unbounded scenes. We present AuraFusion360, a novel reference-based method that enables high-quality object removal and hole filling in 3D scenes represented by Gaussian Splatting. Our approach introduces (1) depth-aware unseen mask generation for accurate occlusion identification, (2) Adaptive Guided Depth Diffusion, a zero-shot method for accurate initial point placement without requiring additional training, and (3) SDEdit-based detail enhancement for multi-view coherence. We also introduce 360-USID, the first comprehensive dataset for 360{\deg} unbounded scene inpainting with ground truth. Extensive experiments demonstrate that AuraFusion360 significantly outperforms existing methods, achieving superior perceptual quality while maintaining geometric accuracy across dramatic viewpoint changes. See our project page for video results and the dataset at https://kkennethwu.github.io/aurafusion360/.