Abstract:Artificial Intelligence Generated Content (AIGC) assisting image production triggers controversy in journalism while attracting attention from media agencies. Key issues involve misinformation, authenticity, semantic fidelity, and interpretability. Most AIGC tools are opaque "black boxes," hindering the dual demands of content accuracy and semantic alignment and creating ethical, sociotechnical, and trust dilemmas. This paper explores pathways for controllable image production in journalism's special coverage and conducts two experiments with projects from China's media agency: (1) Experiment 1 tests cross-platform adaptability via standardized prompts across three scenes, revealing disparities in semantic alignment, cultural specificity, and visual realism driven by training-corpus bias and platform-level filtering. (2) Experiment 2 builds a human-in-the-loop modular pipeline combining high-precision segmentation (SAM, GroundingDINO), semantic alignment (BrushNet), and style regulating (Style-LoRA, Prompt-to-Prompt), ensuring editorial fidelity through CLIP-based semantic scoring, NSFW/OCR/YOLO filtering, and verifiable content credentials. Traceable deployment preserves semantic representation. Consequently, we propose a human-AI collaboration mechanism for AIGC assisted image production in special coverage and recommend evaluating Character Identity Stability (CIS), Cultural Expression Accuracy (CEA), and User-Public Appropriateness (U-PA).
Abstract:Continual learning enables AI models to learn new data sequentially without retraining in real-world scenarios. Most existing methods assume the training data are balanced, aiming to reduce the catastrophic forgetting problem that models tend to forget previously generated data. However, data imbalance and the mixture of new and old data in real-world scenarios lead the model to ignore categories with fewer training samples. To solve this problem, we propose an analytic imbalance rectifier algorithm (AIR), a novel online exemplar-free continual learning method with an analytic (i.e., closed-form) solution for data-imbalanced class-incremental learning (CIL) and generalized CIL scenarios in real-world continual learning. AIR introduces an analytic re-weighting module (ARM) that calculates a re-weighting factor for each class for the loss function to balance the contribution of each category to the overall loss and solve the problem of imbalanced training data. AIR uses the least squares technique to give a non-discriminatory optimal classifier and its iterative update method in continual learning. Experimental results on multiple datasets show that AIR significantly outperforms existing methods in long-tailed and generalized CIL scenarios. The source code is available at https://github.com/fang-d/AIR.