Abstract:We present MiMo-7B, a large language model born for reasoning tasks, with optimization across both pre-training and post-training stages. During pre-training, we enhance the data preprocessing pipeline and employ a three-stage data mixing strategy to strengthen the base model's reasoning potential. MiMo-7B-Base is pre-trained on 25 trillion tokens, with additional Multi-Token Prediction objective for enhanced performance and accelerated inference speed. During post-training, we curate a dataset of 130K verifiable mathematics and programming problems for reinforcement learning, integrating a test-difficulty-driven code-reward scheme to alleviate sparse-reward issues and employing strategic data resampling to stabilize training. Extensive evaluations show that MiMo-7B-Base possesses exceptional reasoning potential, outperforming even much larger 32B models. The final RL-tuned model, MiMo-7B-RL, achieves superior performance on mathematics, code and general reasoning tasks, surpassing the performance of OpenAI o1-mini. The model checkpoints are available at https://github.com/xiaomimimo/MiMo.
Abstract:Building efficient inference framework has gained increasing interests for research community. Early-exit models, a variant of LLMs, improves the inference efficiency of LLMs by skipping rest layers and directly generate output tokens when they are confident enough. However, there is no work of LLM inference framework that takes early-exit models into consideration. This is non-trivial as prior art on LLM inference cannot be directly applied to early-exit models. In this work, we solves two key challenges in building efficient inference framework for early-exit models: (1) batch inference at iteration-level granularity; and (2) KV cache management. For the former, we propose to process the batch until all sequences surpass the early-exit confidence threshold. For the latter, we propose to fill the KV cache of rest layers before the iteration terminates. Our evaluation shows that, compared with the original vLLM operating at full layers, our solution achieves up to 1.25x speed up.