Abstract:Communication system formulation is critical for advancing 6G and future wireless technologies, yet it remains a complex, expertise-intensive task. While Large Language Models (LLMs) offer potential, existing general-purpose models often lack the specialized domain knowledge, nuanced reasoning capabilities, and access to high-quality, domain-specific training data required for adapting a general LLM into an LLM specially for communication system formulation. To bridge this gap, we introduce DeepForm, the first reasoning LLM specially for automated communication system formulation. We propose the world-first large-scale, open-source dataset meticulously curated for this domain called Communication System Formulation Reasoning Corpus (CSFRC). Our framework employs a two-stage training strategy: first, Supervised Fine-Tuning (SFT) with Chain-of-Thought (CoT) data to distill domain knowledge; second, a novel rule-based Reinforcement Learning (RL) algorithm, C-ReMax based on ReMax, to cultivate advanced modeling capabilities and elicit sophisticated reasoning patterns like self-correction and verification. Extensive experiments demonstrate that our model achieves state-of-the-art performance, significantly outperforming larger proprietary LLMs on diverse senerios. We will release related resources to foster further research in this area after the paper is accepted.
Abstract:The increasing demand for augmented and virtual reality applications has highlighted the importance of crafting immersive 3D scenes from a simple single-view image. However, due to the partial priors provided by single-view input, existing methods are often limited to reconstruct low-consistency 3D scenes with narrow fields of view from single-view input. These limitations make them less capable of generalizing to reconstruct immersive scenes. To address this problem, we propose ExScene, a two-stage pipeline to reconstruct an immersive 3D scene from any given single-view image. ExScene designs a novel multimodal diffusion model to generate a high-fidelity and globally consistent panoramic image. We then develop a panoramic depth estimation approach to calculate geometric information from panorama, and we combine geometric information with high-fidelity panoramic image to train an initial 3D Gaussian Splatting (3DGS) model. Following this, we introduce a GS refinement technique with 2D stable video diffusion priors. We add camera trajectory consistency and color-geometric priors into the denoising process of diffusion to improve color and spatial consistency across image sequences. These refined sequences are then used to fine-tune the initial 3DGS model, leading to better reconstruction quality. Experimental results demonstrate that our ExScene achieves consistent and immersive scene reconstruction using only single-view input, significantly surpassing state-of-the-art baselines.