Abstract:To efficiently combat the spread of LLM-generated misinformation, we present RADAR, a retrieval-augmented detector with adversarial refinement for robust fake news detection. Our approach employs a generator that rewrites real articles with factual perturbations, paired with a lightweight detector that verifies claims using dense passage retrieval. To enable effective co-evolution, we introduce verbal adversarial feedback (VAF). Rather than relying on scalar rewards, VAF issues structured natural-language critiques; these guide the generator toward more sophisticated evasion attempts, compelling the detector to adapt and improve. On a fake news detection benchmark, RADAR achieves 86.98% ROC-AUC, significantly outperforming general-purpose LLMs with retrieval. Ablation studies confirm that detector-side retrieval yields the largest gains, while VAF and few-shot demonstrations provide critical signals for robust training.
Abstract:Recent advancements in large language models (LLMs) have enhanced natural-language reasoning. However, their limited parametric memory and susceptibility to hallucination present persistent challenges for tasks requiring accurate, context-based inference. To overcome these limitations, an increasing number of studies have proposed leveraging external knowledge to enhance LLMs. This study offers a systematic exploration of strategies for using external knowledge to enhance LLMs, beginning with a taxonomy that categorizes external knowledge into unstructured and structured data. We then focus on structured knowledge, presenting distinct taxonomies for tables and knowledge graphs (KGs), detailing their integration paradigms with LLMs, and reviewing representative methods. Our comparative analysis further highlights the trade-offs among interpretability, scalability, and performance, providing insights for developing trustworthy and generalizable knowledge-enhanced LLMs.