Abstract:Although deep face recognition has achieved impressive progress in recent years, controversy has arisen regarding discrimination based on skin tone, questioning their deployment into real-world scenarios. In this paper, we aim to systematically and scientifically study this bias from both data and algorithm aspects. First, using the dermatologist approved Fitzpatrick Skin Type classification system and Individual Typology Angle, we contribute a benchmark called Identity Shades (IDS) database, which effectively quantifies the degree of the bias with respect to skin tone in existing face recognition algorithms and commercial APIs. Further, we provide two skin-tone aware training datasets, called BUPT-Globalface dataset and BUPT-Balancedface dataset, to remove bias in training data. Finally, to mitigate the algorithmic bias, we propose a novel meta-learning algorithm, called Meta Balanced Network (MBN), which learns adaptive margins in large margin loss such that the model optimized by this loss can perform fairly across people with different skin tones. To determine the margins, our method optimizes a meta skewness loss on a clean and unbiased meta set and utilizes backward-on-backward automatic differentiation to perform a second order gradient descent step on the current margins. Extensive experiments show that MBN successfully mitigates bias and learns more balanced performance for people with different skin tones in face recognition. The proposed datasets are available at http://www.whdeng.cn/RFW/index.html.
Abstract:Face clustering has attracted rising research interest recently to take advantage of massive amounts of face images on the web. State-of-the-art performance has been achieved by Graph Convolutional Networks (GCN) due to their powerful representation capacity. However, existing GCN-based methods build face graphs mainly according to kNN relations in the feature space, which may lead to a lot of noise edges connecting two faces of different classes. The face features will be polluted when messages pass along these noise edges, thus degrading the performance of GCNs. In this paper, a novel algorithm named Ada-NETS is proposed to cluster faces by constructing clean graphs for GCNs. In Ada-NETS, each face is transformed to a new structure space, obtaining robust features by considering face features of the neighbour images. Then, an adaptive neighbour discovery strategy is proposed to determine a proper number of edges connecting to each face image. It significantly reduces the noise edges while maintaining the good ones to build a graph with clean yet rich edges for GCNs to cluster faces. Experiments on multiple public clustering datasets show that Ada-NETS significantly outperforms current state-of-the-art methods, proving its superiority and generalization.