Abstract:Generalist robot policies, trained on large and diverse datasets, have demonstrated the ability to generalize across a wide spectrum of behaviors, enabling a single policy to act in varied real-world environments. However, they still fall short on new tasks not covered in the training data. When finetuned on limited demonstrations of a new task, these policies often overfit to the specific demonstrations--not only losing their prior abilities to solve a wide variety of generalist tasks but also failing to generalize within the new task itself. In this work, we aim to develop a method that preserves the generalization capabilities of the generalist policy during finetuning, allowing a single policy to robustly incorporate a new skill into its repertoire. Our goal is a single policy that both learns to generalize to variations of the new task and retains the broad competencies gained from pretraining. We show that this can be achieved through a simple yet effective strategy: interpolating the weights of a finetuned model with that of the pretrained model. We show, across extensive simulated and real-world experiments, that such model merging produces a single model that inherits the generalist abilities of the base model and learns to solve the new task robustly, outperforming both the pretrained and finetuned model on out-of-distribution variations of the new task. Moreover, we show that model merging performance scales with the amount of pretraining data, and enables continual acquisition of new skills in a lifelong learning setting, without sacrificing previously learned generalist abilities.
Abstract:We introduce VROOM, a system for reconstructing 3D models of Formula 1 circuits using only onboard camera footage from racecars. Leveraging video data from the 2023 Monaco Grand Prix, we address video challenges such as high-speed motion and sharp cuts in camera frames. Our pipeline analyzes different methods such as DROID-SLAM, AnyCam, and Monst3r and combines preprocessing techniques such as different methods of masking, temporal chunking, and resolution scaling to account for dynamic motion and computational constraints. We show that Vroom is able to partially recover track and vehicle trajectories in complex environments. These findings indicate the feasibility of using onboard video for scalable 4D reconstruction in real-world settings. The project page can be found at https://varun-bharadwaj.github.io/vroom, and our code is available at https://github.com/yajatyadav/vroom.
Abstract:Orthogonal gradient descent has emerged as a powerful method for continual learning tasks. However, its Euclidean projections overlook the underlying information-geometric structure of the space of distributions parametrized by neural networks, which can lead to suboptimal convergence in learning tasks. To counteract this, we combine it with the idea of the natural gradient and present ONG (Orthogonal Natural Gradient Descent). ONG preconditions each new task gradient with an efficient EKFAC approximation of the inverse Fisher information matrix, yielding updates that follow the steepest descent direction under a Riemannian metric. To preserve performance on previously learned tasks, ONG projects these natural gradients onto the orthogonal complement of prior task gradients. We provide a theoretical justification for this procedure, introduce the ONG algorithm, and benchmark its performance on the Permuted and Rotated MNIST datasets. All code for our experiments/reproducibility can be found at https://github.com/yajatyadav/orthogonal-natural-gradient.