Abstract:Autonomous AI is no longer a hard-to-reach concept, it enables the agents to move beyond executing tasks to independently addressing complex problems, adapting to change while handling the uncertainty of the environment. However, what makes the agents truly autonomous? It is agentic reasoning, that is crucial for foundation models to develop symbolic logic, statistical correlations, or large-scale pattern recognition to process information, draw inferences, and make decisions. However, it remains unclear why and how existing agentic reasoning approaches work, in comparison to biological reasoning, which instead is deeply rooted in neural mechanisms involving hierarchical cognition, multimodal integration, and dynamic interactions. In this work, we propose a novel neuroscience-inspired framework for agentic reasoning. Grounded in three neuroscience-based definitions and supported by mathematical and biological foundations, we propose a unified framework modeling reasoning from perception to action, encompassing four core types, perceptual, dimensional, logical, and interactive, inspired by distinct functional roles observed in the human brain. We apply this framework to systematically classify and analyze existing AI reasoning methods, evaluating their theoretical foundations, computational designs, and practical limitations. We also explore its implications for building more generalizable, cognitively aligned agents in physical and virtual environments. Finally, building on our framework, we outline future directions and propose new neural-inspired reasoning methods, analogous to chain-of-thought prompting. By bridging cognitive neuroscience and AI, this work offers a theoretical foundation and practical roadmap for advancing agentic reasoning in intelligent systems. The associated project can be found at: https://github.com/BioRAILab/Awesome-Neuroscience-Agent-Reasoning .
Abstract:This study investigates the linguistic traits of fake news and real news. There are two parts to this study: text data and speech data. The text data for this study consisted of 6420 COVID-19 related tweets re-filtered from Patwa et al. (2021). After cleaning, the dataset contained 3049 tweets, with 2161 labeled as 'real' and 888 as 'fake'. The speech data for this study was collected from TikTok, focusing on COVID-19 related videos. Research assistants fact-checked each video's content using credible sources and labeled them as 'Real', 'Fake', or 'Questionable', resulting in a dataset of 91 real entries and 109 fake entries from 200 TikTok videos with a total word count of 53,710 words. The data was analysed using the Linguistic Inquiry and Word Count (LIWC) software to detect patterns in linguistic data. The results indicate a set of linguistic features that distinguish fake news from real news in both written and speech data. This offers valuable insights into the role of language in shaping trust, social media interactions, and the propagation of fake news.