Abstract:Multi-frequency massive multi-input multi-output (MIMO) communication is a promising strategy for both 5G and future 6G systems, ensuring reliable transmission while enhancing frequency resource utilization. Statistical channel state information (CSI) has been widely adopted in multi-frequency massive MIMO transmissions to reduce overhead and improve transmission performance. In this paper, we propose efficient and accurate methods for obtaining statistical CSI in multi-frequency massive MIMO systems. First, we introduce a multi-frequency massive MIMO channel model and analyze the mapping relationship between two types of statistical CSI, namely the angular power spectrum (APS) and the spatial covariance matrix, along with their correlation across different frequency bands. Next, we propose an autoregressive (AR) method to predict the spatial covariance matrix of any frequency band based on that of another frequency band. Furthermore, we emphasize that channels across different frequency bands share similar APS characteristics. Leveraging the maximum entropy (ME) criterion, we develop a low-complexity algorithm for high-resolution APS estimation. Simulation results validate the effectiveness of the AR-based covariance prediction method and demonstrate the high-resolution estimation capability of the ME-based approach. Furthermore, we demonstrate the effectiveness of multi-frequency cooperative transmission by applying the proposed methods to obtain statistical CSI from low-frequency bands and utilizing it for high-frequency channel transmission. This approach significantly enhances high-frequency transmission performance while effectively reducing system overhead.
Abstract:Low Earth Orbit (LEO) satellite communication is a critical component in the development of sixth generation (6G) networks. The integration of massive multiple-input multiple-output (MIMO) technology is being actively explored to enhance the performance of LEO satellite communications. However, the limited power of LEO satellites poses a significant challenge in improving communication energy efficiency (EE) under constrained power conditions. Artificial intelligence (AI) methods are increasingly recognized as promising solutions for optimizing energy consumption while enhancing system performance, thus enabling more efficient and sustainable communications. This paper proposes approaches to address the challenges associated with precoding in massive MIMO LEO satellite communications. First, we introduce an end-to-end graph neural network (GNN) framework that effectively reduces the computational complexity of traditional precoding methods. Next, we introduce a deep unfolding of the Dinkelbach algorithm and the weighted minimum mean square error (WMMSE) approach to achieve enhanced EE, transforming iterative optimization processes into a structured neural network, thereby improving convergence speed and computational efficiency. Furthermore, we incorporate the Taylor expansion method to approximate matrix inversion within the GNN, enhancing both the interpretability and performance of the proposed method. Numerical experiments demonstrate the validity of our proposed method in terms of complexity and robustness, achieving significant improvements over state-of-the-art methods.
Abstract:Massive multiple-input multiple-output (MIMO) offers significant advantages in spectral and energy efficiencies, positioning it as a cornerstone technology of fifth-generation (5G) wireless communication systems and a promising solution for the burgeoning data demands anticipated in sixth-generation (6G) networks. In recent years, with the continuous advancement of artificial intelligence (AI), a multitude of task-oriented generative foundation models (GFMs) have emerged, achieving remarkable performance in various fields such as computer vision (CV), natural language processing (NLP), and autonomous driving. As a pioneering force, these models are driving the paradigm shift in AI towards generative AI (GenAI). Among them, the generative diffusion model (GDM), as one of state-of-the-art families of generative models, demonstrates an exceptional capability to learn implicit prior knowledge and robust generalization capabilities, thereby enhancing its versatility and effectiveness across diverse applications. In this paper, we delve into the potential applications of GDM in massive MIMO communications. Specifically, we first provide an overview of massive MIMO communication, the framework of GFMs, and the working mechanism of GDM. Following this, we discuss recent research advancements in the field and present a case study of near-field channel estimation based on GDM, demonstrating its promising potential for facilitating efficient ultra-dimensional channel statement information (CSI) acquisition in the context of massive MIMO communications. Finally, we highlight several pressing challenges in future mobile communications and identify promising research directions surrounding GDM.