Abstract:Long video understanding presents significant challenges for vision-language models due to extremely long context windows. Existing solutions relying on naive chunking strategies with retrieval-augmented generation, typically suffer from information fragmentation and a loss of global coherence. We present HAVEN, a unified framework for long-video understanding that enables coherent and comprehensive reasoning by integrating audiovisual entity cohesion and hierarchical video indexing with agentic search. First, we preserve semantic consistency by integrating entity-level representations across visual and auditory streams, while organizing content into a structured hierarchy spanning global summary, scene, segment, and entity levels. Then we employ an agentic search mechanism to enable dynamic retrieval and reasoning across these layers, facilitating coherent narrative reconstruction and fine-grained entity tracking. Extensive experiments demonstrate that our method achieves good temporal coherence, entity consistency, and retrieval efficiency, establishing a new state-of-the-art with an overall accuracy of 84.1% on LVBench. Notably, it achieves outstanding performance in the challenging reasoning category, reaching 80.1%. These results highlight the effectiveness of structured, multimodal reasoning for comprehensive and context-consistent understanding of long-form videos.




Abstract:Target audio source separation with natural language queries presents a promising paradigm for extracting arbitrary audio events through arbitrary text descriptions. Existing methods mainly face two challenges, the difficulty in jointly modeling acoustic-textual alignment and semantic-aware separation within a blindly-learned single-stage architecture, and the reliance on large-scale accurately-labeled training data to compensate for inefficient cross-modal learning and separation. To address these challenges, we propose a hierarchical decomposition framework, HSM-TSS, that decouples the task into global-local semantic-guided feature separation and structure-preserving acoustic reconstruction. Our approach introduces a dual-stage mechanism for semantic separation, operating on distinct global and local semantic feature spaces. We first perform global-semantic separation through a global semantic feature space aligned with text queries. A Q-Audio architecture is employed to align audio and text modalities, serving as pretrained global-semantic encoders. Conditioned on the predicted global feature, we then perform the second-stage local-semantic separation on AudioMAE features that preserve time-frequency structures, followed by acoustic reconstruction. We also propose an instruction processing pipeline to parse arbitrary text queries into structured operations, extraction or removal, coupled with audio descriptions, enabling flexible sound manipulation. Our method achieves state-of-the-art separation performance with data-efficient training while maintaining superior semantic consistency with queries in complex auditory scenes.