Abstract:Deep image steganography (DIS) has achieved significant results in capacity and invisibility. However, current paradigms enforce the secret image to maintain the same resolution as the cover image during hiding and revealing. This leads to two challenges: secret images with inconsistent resolutions must undergo resampling beforehand which results in detail loss during recovery, and the secret image cannot be recovered to its original resolution when the resolution value is unknown. To address these, we propose ARDIS, the first Arbitrary Resolution DIS framework, which shifts the paradigm from discrete mapping to reference-guided continuous signal reconstruction. Specifically, to minimize the detail loss caused by resolution mismatch, we first design a Frequency Decoupling Architecture in hiding stage. It disentangles the secret into a resolution-aligned global basis and a resolution-agnostic high-frequency latent to hide in a fixed-resolution cover. Second, for recovery, we propose a Latent-Guided Implicit Reconstructor to perform deterministic restoration. The recovered detail latent code modulates a continuous implicit function to accurately query and render high-frequency residuals onto the recovered global basis, ensuring faithful restoration of original details. Furthermore, to achieve blind recovery, we introduce an Implicit Resolution Coding strategy. By transforming discrete resolution values into dense feature maps and hiding them in the redundant space of the feature domain, the reconstructor can correctly decode the secret's resolution directly from the steganographic representation. Experimental results demonstrate that ARDIS significantly outperforms state-of-the-art methods in both invisibility and cross-resolution recovery fidelity.
Abstract:The generalization problem remains a critical challenge in face forgery detection. Some researches have discovered that ``a backdoor path" in the representations from forgery-irrelevant information to labels induces biased learning, thereby hindering the generalization. In this paper, these forgery-irrelevant information are collectively termed spurious correlations factors. Previous methods predominantly focused on identifying concrete, specific spurious correlation and designing corresponding solutions to address them. However, spurious correlations arise from unobservable confounding factors, making it impractical to identify and address each one individually. To address this, we propose an intervention paradigm for representation space. Instead of tracking and blocking various instance-level spurious correlation one by one, we uniformly model them as a low-rank subspace and intervene in them. Specifically, we decompose spurious correlation features into a low-rank subspace via orthogonal low-rank projection, subsequently removing this subspace from the original representation and training its orthogonal complement to capture forgery-related features. This low-rank projection removal effectively eliminates spurious correlation factors, ensuring that classification decision is based on authentic forgery cues. With only 0.43M trainable parameters, our method achieves state-of-the-art performance across several benchmarks, demonstrating excellent robustness and generalization.