Abstract:Deploying robot learning methods to a quadrotor in unstructured outdoor environments is an exciting task. Quadrotors operating in real-world environments by learning-based methods encounter several challenges: a large amount of simulator generated data required for training, strict demands for real-time processing onboard, and the sim-to-real gap caused by dynamic and noisy conditions. Current works have made a great breakthrough in applying learning-based methods to end-to-end control of quadrotors, but rarely mention the infrastructure system training from scratch and deploying to reality, which makes it difficult to reproduce methods and applications. To bridge this gap, we propose a platform that enables the seamless transfer of end-to-end deep reinforcement learning (DRL) policies. We integrate the training environment, flight dynamics control, DRL algorithms, the MAVROS middleware stack, and hardware into a comprehensive workflow and architecture that enables quadrotors' policies to be trained from scratch to real-world deployment in several minutes. Our platform provides rich types of environments including hovering, dynamic obstacle avoidance, trajectory tracking, balloon hitting, and planning in unknown environments, as a physical experiment benchmark. Through extensive empirical validation, we demonstrate the efficiency of proposed sim-to-real platform, and robust outdoor flight performance under real-world perturbations. Details can be found from our website https://emnavi.tech/AirGym/.
Abstract:Visual SLAM (Simultaneous Localization and Mapping) based on planar features has found widespread applications in fields such as environmental structure perception and augmented reality. However, current research faces challenges in accurately localizing and mapping in planar ambiguous scenes, primarily due to the poor accuracy of the employed planar features and data association methods. In this paper, we propose a visual SLAM system based on planar features designed for planar ambiguous scenes, encompassing planar processing, data association, and multi-constraint factor graph optimization. We introduce a planar processing strategy that integrates semantic information with planar features, extracting the edges and vertices of planes to be utilized in tasks such as plane selection, data association, and pose optimization. Next, we present an integrated data association strategy that combines plane parameters, semantic information, projection IoU (Intersection over Union), and non-parametric tests, achieving accurate and robust plane data association in planar ambiguous scenes. Finally, we design a set of multi-constraint factor graphs for camera pose optimization. Qualitative and quantitative experiments conducted on publicly available datasets demonstrate that our proposed system competes effectively in both accuracy and robustness in terms of map construction and camera localization compared to state-of-the-art methods.