Abstract:Preserving privacy and reducing communication costs for edge users pose significant challenges in recommendation systems. Although federated learning has proven effective in protecting privacy by avoiding data exchange between clients and servers, it has been shown that the server can infer user ratings based on updated non-zero gradients obtained from two consecutive rounds of user-uploaded gradients. Moreover, federated recommendation systems (FRS) face the challenge of heterogeneity, leading to decreased recommendation performance. In this paper, we propose FedRec+, an ensemble framework for FRS that enhances privacy while addressing the heterogeneity challenge. FedRec+ employs optimal subset selection based on feature similarity to generate near-optimal virtual ratings for pseudo items, utilizing only the user's local information. This approach reduces noise without incurring additional communication costs. Furthermore, we utilize the Wasserstein distance to estimate the heterogeneity and contribution of each client, and derive optimal aggregation weights by solving a defined optimization problem. Experimental results demonstrate the state-of-the-art performance of FedRec+ across various reference datasets.
Abstract:Machine learning algorithms minimizing the average training loss usually suffer from poor generalization performance due to the greedy exploitation of correlations among the training data, which are not stable under distributional shifts. It inspires various works for domain generalization (DG), where a series of methods, such as Causal Matching and FISH, work by pairwise domain operations. They would need $O(n^2)$ pairwise domain operations with $n$ domains, where each one is often highly expensive. Moreover, while a common objective in the DG literature is to learn invariant representations against domain-induced spurious correlations, we highlight the importance of mitigating spurious correlations caused by objects. Based on the observation that diversity helps mitigate spurious correlations, we propose a Diversity boosted twO-level saMplIng framework (DOMI) utilizing Determinantal Point Processes (DPPs) to efficiently sample the most informative ones among large number of domains. We show that DOMI helps train robust models against spurious correlations from both domain-side and object-side, substantially enhancing the performance of the backbone DG algorithms on rotated MNIST, rotated Fashion MNIST, and iwildcam datasets.