Abstract:Real-world visual data rarely presents as isolated, static instances. Instead, it often evolves gradually over time through variations in pose, lighting, object state, or scene context. However, conventional classifiers are typically trained under the assumption of temporal independence, limiting their ability to capture such dynamics. We propose a simple yet effective framework that equips standard feedforward classifiers with temporal reasoning, all without modifying model architectures or introducing recurrent modules. At the heart of our approach is a novel Support-Exemplar-Query (SEQ) learning paradigm, which structures training data into temporally coherent trajectories. These trajectories enable the model to learn class-specific temporal prototypes and align prediction sequences via a differentiable soft-DTW loss. A multi-term objective further promotes semantic consistency and temporal smoothness. By interpreting input sequences as evolving feature trajectories, our method introduces a strong temporal inductive bias through loss design alone. This proves highly effective in both static and temporal tasks: it enhances performance on fine-grained and ultra-fine-grained image classification, and delivers precise, temporally consistent predictions in video anomaly detection. Despite its simplicity, our approach bridges static and temporal learning in a modular and data-efficient manner, requiring only a simple classifier on top of pre-extracted features.
Abstract:Video anomaly detection (VAD) has witnessed significant advancements through the integration of large language models (LLMs) and vision-language models (VLMs), addressing critical challenges such as interpretability, temporal reasoning, and generalization in dynamic, open-world scenarios. This paper presents an in-depth review of cutting-edge LLM-/VLM-based methods in 2024, focusing on four key aspects: (i) enhancing interpretability through semantic insights and textual explanations, making visual anomalies more understandable; (ii) capturing intricate temporal relationships to detect and localize dynamic anomalies across video frames; (iii) enabling few-shot and zero-shot detection to minimize reliance on large, annotated datasets; and (iv) addressing open-world and class-agnostic anomalies by using semantic understanding and motion features for spatiotemporal coherence. We highlight their potential to redefine the landscape of VAD. Additionally, we explore the synergy between visual and textual modalities offered by LLMs and VLMs, highlighting their combined strengths and proposing future directions to fully exploit the potential in enhancing video anomaly detection.
Abstract:Large language models (LLMs) have revolutionized video-based computer vision applications, including action recognition, anomaly detection, and video summarization. Videos inherently pose unique challenges, combining spatial complexity with temporal dynamics that are absent in static images or textual data. Current approaches to video understanding with LLMs often rely on pretrained video encoders to extract spatiotemporal features and text encoders to capture semantic meaning. These representations are integrated within LLM frameworks, enabling multimodal reasoning across diverse video tasks. However, the critical question persists: Can LLMs truly understand the concept of time, and how effectively can they reason about temporal relationships in videos? This work critically examines the role of LLMs in video processing, with a specific focus on their temporal reasoning capabilities. We identify key limitations in the interaction between LLMs and pretrained encoders, revealing gaps in their ability to model long-term dependencies and abstract temporal concepts such as causality and event progression. Furthermore, we analyze challenges posed by existing video datasets, including biases, lack of temporal annotations, and domain-specific limitations that constrain the temporal understanding of LLMs. To address these gaps, we explore promising future directions, including the co-evolution of LLMs and encoders, the development of enriched datasets with explicit temporal labels, and innovative architectures for integrating spatial, temporal, and semantic reasoning. By addressing these challenges, we aim to advance the temporal comprehension of LLMs, unlocking their full potential in video analysis and beyond.