Abstract:For a fixed parameter size, the capabilities of large models are primarily determined by the quality and quantity of its training data. Consequently, training datasets now grow faster than the rate at which new data is indexed on the web, leading to projected data exhaustion over the next decade. Much more data exists as user-generated content that is not publicly indexed, but incorporating such data comes with considerable risks, such as leaking private information and other undesirable content. We introduce a framework, Generative Data Refinement (GDR), for using pretrained generative models to transform a dataset with undesirable content into a refined dataset that is more suitable for training. Our experiments show that GDR can outperform industry-grade solutions for dataset anonymization, as well as enable direct detoxification of highly unsafe datasets. Moreover, we show that by generating synthetic data that is conditioned on each example in the real dataset, GDR's refined outputs naturally match the diversity of web scale datasets, and thereby avoid the often challenging task of generating diverse synthetic data via model prompting. The simplicity and effectiveness of GDR make it a powerful tool for scaling up the total stock of training data for frontier models.
Abstract:The dominant framework for alignment of large language models (LLM), whether through reinforcement learning from human feedback or direct preference optimisation, is to learn from preference data. This involves building datasets where each element is a quadruplet composed of a prompt, two independent responses (completions of the prompt) and a human preference between the two independent responses, yielding a preferred and a dis-preferred response. Such data is typically scarce and expensive to collect. On the other hand, \emph{single-trajectory} datasets where each element is a triplet composed of a prompt, a response and a human feedback is naturally more abundant. The canonical element of such datasets is for instance an LLM's response to a user's prompt followed by a user's feedback such as a thumbs-up/down. Consequently, in this work, we propose DRO, or \emph{Direct Reward Optimisation}, as a framework and associated algorithms that do not require pairwise preferences. DRO uses a simple mean-squared objective that can be implemented in various ways. We validate our findings empirically, using T5 encoder-decoder language models, and show DRO's performance over selected baselines such as Kahneman-Tversky Optimization (KTO). Thus, we confirm that DRO is a simple and empirically compelling method for single-trajectory policy optimisation.