Abstract:Diffusion model (DM)-based channel estimation, which generates channel samples via a posteriori sampling stepwise with denoising process, has shown potential in high-precision channel state information (CSI) acquisition. However, slow sampling speed is an essential challenge for recent developed DM-based schemes. To alleviate this problem, we propose a novel flow matching (FM)-based generative model for multiple-input multiple-output (MIMO) channel estimation. We first formulate the channel estimation problem within FM framework, where the conditional probability path is constructed from the noisy channel distribution to the true channel distribution. In this case, the path evolves along the straight-line trajectory at a constant speed. Then, guided by this, we derive the velocity field that depends solely on the noise statistics to guide generative models training. Furthermore, during the sampling phase, we utilize the trained velocity field as prior information for channel estimation, which allows for quick and reliable noise channel enhancement via ordinary differential equation (ODE) Euler solver. Finally, numerical results demonstrate that the proposed FM-based channel estimation scheme can significantly reduce the sampling overhead compared to other popular DM-based schemes, such as the score matching (SM)-based scheme. Meanwhile, it achieves superior channel estimation accuracy under different channel conditions.




Abstract:In the domain of 3D scene representation, 3D Gaussian Splatting (3DGS) has emerged as a pivotal technology. However, its application to large-scale, high-resolution scenes (exceeding 4k$\times$4k pixels) is hindered by the excessive computational requirements for managing a large number of Gaussians. Addressing this, we introduce 'EfficientGS', an advanced approach that optimizes 3DGS for high-resolution, large-scale scenes. We analyze the densification process in 3DGS and identify areas of Gaussian over-proliferation. We propose a selective strategy, limiting Gaussian increase to key primitives, thereby enhancing the representational efficiency. Additionally, we develop a pruning mechanism to remove redundant Gaussians, those that are merely auxiliary to adjacent ones. For further enhancement, we integrate a sparse order increment for Spherical Harmonics (SH), designed to alleviate storage constraints and reduce training overhead. Our empirical evaluations, conducted on a range of datasets including extensive 4K+ aerial images, demonstrate that 'EfficientGS' not only expedites training and rendering times but also achieves this with a model size approximately tenfold smaller than conventional 3DGS while maintaining high rendering fidelity.
Abstract:There is an emerging effort to combine the two popular technical paths, i.e., the multi-view stereo (MVS) and neural implicit surface (NIS), in scene reconstruction from sparse views. In this paper, we introduce a novel integration scheme that combines the multi-view stereo with neural signed distance function representations, which potentially overcomes the limitations of both methods. MVS uses per-view depth estimation and cross-view fusion to generate accurate surface, while NIS relies on a common coordinate volume. Based on this, we propose to construct per-view cost frustum for finer geometry estimation, and then fuse cross-view frustums and estimate the implicit signed distance functions to tackle noise and hole issues. We further apply a cascade frustum fusion strategy to effectively captures global-local information and structural consistency. Finally, we apply cascade sampling and a pseudo-geometric loss to foster stronger integration between the two architectures. Extensive experiments demonstrate that our method reconstructs robust surfaces and outperforms existing state-of-the-art methods.