Abstract:Emotion understanding is critical for making Large Language Models (LLMs) more general, reliable, and aligned with humans. Art conveys emotion through the joint design of visual and auditory elements, yet most prior work is human-centered or single-modality, overlooking the emotion intentionally expressed by the artwork. Meanwhile, current Audio-Visual Language Models (AVLMs) typically require large-scale audio pretraining to endow Visual Language Models (VLMs) with hearing, which limits scalability. We present Vision Anchored Audio-Visual Emotion LLM (VAEmotionLLM), a two-stage framework that teaches a VLM to hear by seeing with limited audio pretraining and to understand emotion across modalities. In Stage 1, Vision-Guided Audio Alignment (VG-Align) distills the frozen visual pathway into a new audio pathway by aligning next-token distributions of the shared LLM on synchronized audio-video clips, enabling hearing without a large audio dataset. In Stage 2, a lightweight Cross-Modal Emotion Adapter (EmoAdapter), composed of the Emotion Enhancer and the Emotion Supervisor, injects emotion-sensitive residuals and applies emotion supervision to enhance cross-modal emotion understanding. We also construct ArtEmoBenchmark, an art-centric emotion benchmark that evaluates content and emotion understanding under audio-only, visual-only, and audio-visual inputs. VAEmotionLLM achieves state-of-the-art results on ArtEmoBenchmark, outperforming audio-only, visual-only, and audio-visual baselines. Ablations show that the proposed components are complementary.
Abstract:Visual text images are prevalent in various applications, requiring careful font selection and typographic choices. Recent advances in Diffusion Transformer (DiT)-based text-to-image (T2I) models show promise in automating these processes. However, these methods still face challenges such as inconsistent fonts, style variation, and limited fine-grained control, particularly at the word level. This paper proposes a two-stage DiT-based pipeline to address these issues by enhancing controllability over typography and style in text rendering. We introduce Typography Control (TC) finetuning, an efficient parameter fine-tuning method, and enclosing typography control tokens (ETC-tokens), which enable precise word-level application of typographic features. To further enhance style control, we present a Style Control Adapter (SCA) that injects style information through image inputs independent of text prompts. Through comprehensive experiments, we demonstrate the effectiveness of our approach in achieving superior word-level typographic control, font consistency, and style consistency in Basic and Artistic Text Rendering (BTR and ATR) tasks. Our results mark a significant advancement in the precision and adaptability of T2I models, presenting new possibilities for creative applications and design-oriented tasks.