Amy
Abstract:The growing complexity of power system operations has created an urgent need for intelligent, automated tools to support reliable and efficient grid management. Conventional analysis tools often require significant domain expertise and manual effort, which limits their accessibility and adaptability. To address these challenges, this paper presents X-GridAgent, a novel large language model (LLM)-powered agentic AI system designed to automate complex power system analysis through natural language queries. The system integrates domain-specific tools and specialized databases under a three-layer hierarchical architecture comprising planning, coordination, and action layers. This architecture offers high flexibility and adaptability to previously unseen tasks, while providing a modular and extensible framework that can be readily expanded to incorporate new tools, data sources, or analytical capabilities. To further enhance performance, we introduce two novel algorithms: (1) LLM-driven prompt refinement with human feedback, and (2) schema-adaptive hybrid retrieval-augmented generation (RAG) for accurate information retrieval from large-scale structured grid datasets. Experimental evaluations across a variety of user queries and power grid cases demonstrate the effectiveness and reliability of X-GridAgent in automating interpretable and rigorous power system analysis.




Abstract:We describe a novel integrated algorithm for real-time enhancement of video acquired under challenging lighting conditions. Such conditions include low lighting, haze, and high dynamic range situations. The algorithm automatically detects the dominate source of impairment, then depending on whether it is low lighting, haze or others, a corresponding pre-processing is applied to the input video, followed by the core enhancement algorithm. Temporal and spatial redundancies in the video input are utilized to facilitate real-time processing and to improve temporal and spatial consistency of the output. The proposed algorithm can be used as an independent module, or be integrated in either a video encoder or a video decoder for further optimizations.