Abstract:Graph neural networks (GNNs), as topology/structure-aware models within deep learning, have emerged as powerful tools for AI-aided drug discovery (AIDD). By directly operating on molecular graphs, GNNs offer an intuitive and expressive framework for learning the complex topological and geometric features of drug-like molecules, cementing their role in modern molecular modeling. This review provides a comprehensive overview of the methodological foundations and representative applications of GNNs in drug discovery, spanning tasks such as molecular property prediction, virtual screening, molecular generation, biomedical knowledge graph construction, and synthesis planning. Particular attention is given to recent methodological advances, including geometric GNNs, interpretable models, uncertainty quantification, scalable graph architectures, and graph generative frameworks. We also discuss how these models integrate with modern deep learning approaches, such as self-supervised learning, multi-task learning, meta-learning and pre-training. Throughout this review, we highlight the practical challenges and methodological bottlenecks encountered when applying GNNs to real-world drug discovery pipelines, and conclude with a discussion on future directions.
Abstract:Quantization stands as a pivotal technique for large language model (LLM) serving, yet it poses significant challenges particularly in achieving effective low-bit quantization. The limited numerical mapping makes the quantized model produce a non-trivial error, bringing out intolerable performance degration. This paper is anchored in the basic idea of model compression objectives, and delves into the layer-wise error distribution of LLMs during post-training quantization. Subsequently, we introduce ASER, an algorithm consisting of (1) Error Reconstruction: low-rank compensation for quantization error with LoRA-style matrices constructed by whitening SVD; (2) Activation Smoothing: outlier extraction to gain smooth activation and better error compensation. ASER is capable of quantizing typical LLMs to low-bit ones, particularly preserving accuracy even in W4A8 per-channel setup. Experimental results show that ASER is competitive among the state-of-the-art quantization algorithms, showing potential to activation quantization, with minor overhead.