Abstract:Domain adaptation is often hampered by exceedingly small target datasets and inaccessible source data. These conditions are prevalent in speech verification, where privacy policies and/or languages with scarce speech resources limit the availability of sufficient data. This paper explored techniques of sourcefree domain adaptation unto a limited target speech dataset for speaker verificationin data-scarce languages. Both language and channel mis-match between source and target were investigated. Fine-tuning methods were evaluated and compared across different sizes of labeled target data. A novel iterative cluster-learn algorithm was studied for unlabeled target datasets.
Abstract:A widely used test for the diagnosis of Parkinson's disease (PD) and Essential tremor (ET) is hand-drawn shapes,where the analysis is observationally performed by the examining neurologist. This method is subjective and is prone to bias amongst different physicians. Due to the similarities in the symptoms of the two diseases, they are often misdiagnosed.Studies which attempt to automate the process typically use digitized input, where the tablet or specialized equipment are not affordable in many clinical settings. This study uses a dataset of scanned pen and paper drawings and a convolutional neural network (CNN) to perform classification between PD, ET and control subjects. The discrimination accuracy of PD from controls was 98.2%. The discrimination accuracy of PD from ET and from controls was 92%. An ablation study was conducted and indicated that correct hyper parameter optimization can increases the accuracy up to 4.33%. Finally, the study indicates the viability of using a CNN-enabled machine vision system to provide robust and accurate detection of movement disorders from hand drawn spirals.
Abstract:Clinical methods that assess gait in Parkinson's Disease (PD) are mostly qualitative. Quantitative methods necessitate costly instrumentation or cumbersome wearable devices, which limits their usability. Only few of these methods can discriminate different stages in PD progression. This study applies machine learning methods to discriminate six stages of PD. The data was acquired by low cost walker-mounted sensors in an experiment at a movement disorders clinic and the PD stages were clinically labeled. A large set of features, some unique to this study are extracted and three feature selection methods are compared using a multi-class Random Forest (RF) classifier. The feature subset selected by the Analysis of Variance (ANOVA) method provided performance similar to the full feature set: 93% accuracy and had significantly shorter computation time. Compared to PCA, this method also enabled clinical interpretability of the selected features, an essential attribute to healthcare applications. All selected-feature sets are dominated by information theoretic features and statistical features and offer insights into the characteristics of gait deterioration in PD. The results indicate a feasibility of machine learning to accurately classify PD severity stages from kinematic signals acquired by low-cost, walker-mounted sensors and implies a potential to aid medical practitioners in the quantitative assessment of PD progression. The study presents a solution to the small and noisy data problem, which is common in most sensor-based healthcare assessments.
Abstract:Obesity is an important concern in public health, and Body Mass Index is one of the useful (and proliferant) measures. We use Convolutional Neural Networks to determine Body Mass Index from photographs in a study with 161 participants. Low data, a common problem in medicine, is addressed by reducing the information in the photographs by generating silhouette images. Results present with high correlation when tested on unseen data.