Abstract:Pseudo-labeling is a popular semi-supervised learning technique to leverage unlabeled data when labeled samples are scarce. The generation and selection of pseudo-labels heavily rely on labeled data. Existing approaches implicitly assume that the labeled data is gold standard and 'perfect'. However, this can be violated in reality with issues such as mislabeling or ambiguity. We address this overlooked aspect and show the importance of investigating labeled data quality to improve any pseudo-labeling method. Specifically, we introduce a novel data characterization and selection framework called DIPS to extend pseudo-labeling. We select useful labeled and pseudo-labeled samples via analysis of learning dynamics. We demonstrate the applicability and impact of DIPS for various pseudo-labeling methods across an extensive range of real-world tabular and image datasets. Additionally, DIPS improves data efficiency and reduces the performance distinctions between different pseudo-labelers. Overall, we highlight the significant benefits of a data-centric rethinking of pseudo-labeling in real-world settings.
Abstract:Constructing valid prediction intervals rather than point estimates is a well-established approach for uncertainty quantification in the regression setting. Models equipped with this capacity output an interval of values in which the ground truth target will fall with some prespecified probability. This is an essential requirement in many real-world applications where simple point predictions' inability to convey the magnitude and frequency of errors renders them insufficient for high-stakes decisions. Quantile regression is a leading approach for obtaining such intervals via the empirical estimation of quantiles in the (non-parametric) distribution of outputs. This method is simple, computationally inexpensive, interpretable, assumption-free, and effective. However, it does require that the specific quantiles being learned are chosen a priori. This results in (a) intervals that are arbitrarily symmetric around the median which is sub-optimal for realistic skewed distributions, or (b) learning an excessive number of intervals. In this work, we propose Relaxed Quantile Regression (RQR), a direct alternative to quantile regression based interval construction that removes this arbitrary constraint whilst maintaining its strengths. We demonstrate that this added flexibility results in intervals with an improvement in desirable qualities (e.g. mean width) whilst retaining the essential coverage guarantees of quantile regression.
Abstract:Characterizing samples that are difficult to learn from is crucial to developing highly performant ML models. This has led to numerous Hardness Characterization Methods (HCMs) that aim to identify "hard" samples. However, there is a lack of consensus regarding the definition and evaluation of "hardness". Unfortunately, current HCMs have only been evaluated on specific types of hardness and often only qualitatively or with respect to downstream performance, overlooking the fundamental quantitative identification task. We address this gap by presenting a fine-grained taxonomy of hardness types. Additionally, we propose the Hardness Characterization Analysis Toolkit (H-CAT), which supports comprehensive and quantitative benchmarking of HCMs across the hardness taxonomy and can easily be extended to new HCMs, hardness types, and datasets. We use H-CAT to evaluate 13 different HCMs across 8 hardness types. This comprehensive evaluation encompassing over 14K setups uncovers strengths and weaknesses of different HCMs, leading to practical tips to guide HCM selection and future development. Our findings highlight the need for more comprehensive HCM evaluation, while we hope our hardness taxonomy and toolkit will advance the principled evaluation and uptake of data-centric AI methods.
Abstract:Identification and appropriate handling of inconsistencies in data at deployment time is crucial to reliably use machine learning models. While recent data-centric methods are able to identify such inconsistencies with respect to the training set, they suffer from two key limitations: (1) suboptimality in settings where features exhibit statistical independencies, due to their usage of compressive representations and (2) lack of localization to pin-point why a sample might be flagged as inconsistent, which is important to guide future data collection. We solve these two fundamental limitations using directed acyclic graphs (DAGs) to encode the training set's features probability distribution and independencies as a structure. Our method, called DAGnosis, leverages these structural interactions to bring valuable and insightful data-centric conclusions. DAGnosis unlocks the localization of the causes of inconsistencies on a DAG, an aspect overlooked by previous approaches. Moreover, we show empirically that leveraging these interactions (1) leads to more accurate conclusions in detecting inconsistencies, as well as (2) provides more detailed insights into why some samples are flagged.
Abstract:Bayesian optimization (BO) is a powerful approach for optimizing complex and expensive-to-evaluate black-box functions. Its importance is underscored in many applications, notably including hyperparameter tuning, but its efficacy depends on efficiently balancing exploration and exploitation. While there has been substantial progress in BO methods, striking this balance still remains a delicate process. In this light, we present \texttt{LLAMBO}, a novel approach that integrates the capabilities of large language models (LLM) within BO. At a high level, we frame the BO problem in natural language terms, enabling LLMs to iteratively propose promising solutions conditioned on historical evaluations. More specifically, we explore how combining contextual understanding, few-shot learning proficiency, and domain knowledge of LLMs can enhance various components of model-based BO. Our findings illustrate that \texttt{LLAMBO} is effective at zero-shot warmstarting, and improves surrogate modeling and candidate sampling, especially in the early stages of search when observations are sparse. Our approach is performed in context and does not require LLM finetuning. Additionally, it is modular by design, allowing individual components to be integrated into existing BO frameworks, or function cohesively as an end-to-end method. We empirically validate \texttt{LLAMBO}'s efficacy on the problem of hyperparameter tuning, highlighting strong empirical performance across a range of diverse benchmarks, proprietary, and synthetic tasks.
Abstract:Machine Learning (ML) in low-data settings remains an underappreciated yet crucial problem. This challenge is pronounced in low-to-middle income countries where access to large datasets is often limited or even absent. Hence, data augmentation methods to increase the sample size of datasets needed for ML are key to unlocking the transformative potential of ML in data-deprived regions and domains. Unfortunately, the limited training set constrains traditional tabular synthetic data generators in their ability to generate a large and diverse augmented dataset needed for ML tasks. To address this technical challenge, we introduce CLLM, which leverages the prior knowledge of Large Language Models (LLMs) for data augmentation in the low-data regime. While diverse, not all the data generated by LLMs will help increase utility for a downstream task, as for any generative model. Consequently, we introduce a principled curation process, leveraging learning dynamics, coupled with confidence and uncertainty metrics, to obtain a high-quality dataset. Empirically, on multiple real-world datasets, we demonstrate the superior performance of LLMs in the low-data regime compared to conventional generators. We further show our curation mechanism improves the downstream performance for all generators, including LLMs. Additionally, we provide insights and understanding into the LLM generation and curation mechanism, shedding light on the features that enable them to output high-quality augmented datasets. CLLM paves the way for wider usage of ML in data scarce domains and regions, by allying the strengths of LLMs with a robust data-centric approach.
Abstract:Evaluating the value of a hypothetical target policy with only a logged dataset is important but challenging. On the one hand, it brings opportunities for safe policy improvement under high-stakes scenarios like clinical guidelines. On the other hand, such opportunities raise a need for precise off-policy evaluation (OPE). While previous work on OPE focused on improving the algorithm in value estimation, in this work, we emphasize the importance of the offline dataset, hence putting forward a data-centric framework for evaluating OPE problems. We propose DataCOPE, a data-centric framework for evaluating OPE, that answers the questions of whether and to what extent we can evaluate a target policy given a dataset. DataCOPE (1) forecasts the overall performance of OPE algorithms without access to the environment, which is especially useful before real-world deployment where evaluating OPE is impossible; (2) identifies the sub-group in the dataset where OPE can be inaccurate; (3) permits evaluations of datasets or data-collection strategies for OPE problems. Our empirical analysis of DataCOPE in the logged contextual bandit settings using healthcare datasets confirms its ability to evaluate both machine-learning and human expert policies like clinical guidelines.
Abstract:Data quality is crucial for robust machine learning algorithms, with the recent interest in data-centric AI emphasizing the importance of training data characterization. However, current data characterization methods are largely focused on classification settings, with regression settings largely understudied. To address this, we introduce TRIAGE, a novel data characterization framework tailored to regression tasks and compatible with a broad class of regressors. TRIAGE utilizes conformal predictive distributions to provide a model-agnostic scoring method, the TRIAGE score. We operationalize the score to analyze individual samples' training dynamics and characterize samples as under-, over-, or well-estimated by the model. We show that TRIAGE's characterization is consistent and highlight its utility to improve performance via data sculpting/filtering, in multiple regression settings. Additionally, beyond sample level, we show TRIAGE enables new approaches to dataset selection and feature acquisition. Overall, TRIAGE highlights the value unlocked by data characterization in real-world regression applications
Abstract:Evaluating the performance of machine learning models on diverse and underrepresented subgroups is essential for ensuring fairness and reliability in real-world applications. However, accurately assessing model performance becomes challenging due to two main issues: (1) a scarcity of test data, especially for small subgroups, and (2) possible distributional shifts in the model's deployment setting, which may not align with the available test data. In this work, we introduce 3S Testing, a deep generative modeling framework to facilitate model evaluation by generating synthetic test sets for small subgroups and simulating distributional shifts. Our experiments demonstrate that 3S Testing outperforms traditional baselines -- including real test data alone -- in estimating model performance on minority subgroups and under plausible distributional shifts. In addition, 3S offers intervals around its performance estimates, exhibiting superior coverage of the ground truth compared to existing approaches. Overall, these results raise the question of whether we need a paradigm shift away from limited real test data towards synthetic test data.
Abstract:Synthetic data serves as an alternative in training machine learning models, particularly when real-world data is limited or inaccessible. However, ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task. This paper addresses this issue by exploring the potential of integrating data-centric AI techniques which profile the data to guide the synthetic data generation process. Moreover, we shed light on the often ignored consequences of neglecting these data profiles during synthetic data generation -- despite seemingly high statistical fidelity. Subsequently, we propose a novel framework to evaluate the integration of data profiles to guide the creation of more representative synthetic data. In an empirical study, we evaluate the performance of five state-of-the-art models for tabular data generation on eleven distinct tabular datasets. The findings offer critical insights into the successes and limitations of current synthetic data generation techniques. Finally, we provide practical recommendations for integrating data-centric insights into the synthetic data generation process, with a specific focus on classification performance, model selection, and feature selection. This study aims to reevaluate conventional approaches to synthetic data generation and promote the application of data-centric AI techniques in improving the quality and effectiveness of synthetic data.