Abstract:We propose a novel method for user-to-user interference (UUI) mitigation in dynamic time-division duplex multiple-input multiple-output communication systems with multi-antenna users. Specifically, we consider the downlink data transmission in the presence of UUI caused by a user that simultaneously transmits in uplink. Our method introduces an overhead for estimation of the user-to-user channels by transmitting pilots from the uplink user to the downlink users. Each downlink user obtains a channel estimate that is used to design a combining matrix for UUI mitigation. We analytically derive an achievable spectral efficiency for the downlink transmission in the presence of UUI with our mitigation technique. Through numerical simulations, we show that our method can significantly improve the spectral efficiency performance in cases of heavy UUI.
Abstract:We consider a cell-free massive multiple-input multiple-output (CFmMIMO) network operating in dynamic time division duplex (DTDD). The switching point between the uplink (UL) and downlink (DL) data transmission phases can be adapted dynamically to the instantaneous quality-of-service (QoS) requirements in order to improve energy efficiency (EE). To this end, we formulate a problem of optimizing the DTDD switching point jointly with the UL and DL power control coefficients, and the large-scale fading decoding (LSFD) weights for EE maximization. Then, we propose an iterative algorithm to solve the formulated challenging problem using successive convex approximation with an approximate stationary solution. Simulation results show that optimizing switching points remarkably improves EE compared with baseline schemes that adjust switching points heuristically.
Abstract:Federated learning (FL) with its data privacy protection and communication efficiency has been considered as a promising learning framework for beyond-5G/6G systems. We consider a scenario where a group of downlink non-FL users are jointly served with a group of FL users using massive multiple-input multiple-output technology. The main challenge is how to utilise the resource to optimally serve both FL and non-FL users. We propose a communication scheme that serves the downlink of the non-FL users (UEs) and the uplink of FL UEs in each half of the frequency band. We formulate an optimization problem for optimizing transmit power to maximize the minimum effective data rates for non-FL users, while guaranteeing a quality-of-service time of each FL communication round for FL users. Then, a successive convex approximation-based algorithm is proposed to solve the formulated problem. Numerical results confirm that our proposed scheme significantly outperforms the baseline scheme.
Abstract:For downlink massive multiple-input multiple-output (MIMO) operating in time-division duplex protocol, users can decode the signals effectively by only utilizing the channel statistics as long as channel hardening holds. However, in a reconfigurable intelligent surface (RIS)-assisted massive MIMO system, the propagation channels may be less hardened due to the extra random fluctuations of the effective channel gains. To address this issue, we propose a learning-based method that trains a neural network to learn a mapping between the received downlink signal and the effective channel gains. The proposed method does not require any downlink pilots and statistical information of interfering users. Numerical results show that, in terms of mean-square error of the channel estimation, our proposed learning-based method outperforms the state-of-the-art methods, especially when the light-of-sight (LoS) paths are dominated by non-LoS paths with a low level of channel hardening, e.g., in the cases of small numbers of RIS elements and/or base station antennas.
Abstract:Federated learning (FL) has been considered as a promising learning framework for future machine learning systems due to its privacy preservation and communication efficiency. In beyond-5G/6G systems, it is likely to have multiple FL groups with different learning purposes. This scenario leads to a question: How does a wireless network support multiple FL groups? As an answer, we first propose to use a cell-free massive multiple-input multiple-output (MIMO) network to guarantee the stable operation of multiple FL processes by letting the iterations of these FL processes be executed together within a large-scale coherence time. We then develop a novel scheme that asynchronously executes the iterations of FL processes under multicasting downlink and conventional uplink transmission protocols. Finally, we propose a simple/low-complexity resource allocation algorithm which optimally chooses the power and computation resources to minimize the execution time of each iteration of each FL process.
Abstract:Federated multi-task learning (FMTL) has emerged as a natural choice to capture the statistical diversity among the clients in federated learning. To unleash the potential of FMTL beyond statistical diversity, we formulate a new FMTL problem FedU using Laplacian regularization, which can explicitly leverage relationships among the clients for multi-task learning. We first show that FedU provides a unified framework covering a wide range of problems such as conventional federated learning, personalized federated learning, few-shot learning, and stratified model learning. We then propose algorithms including both communication-centralized and decentralized schemes to learn optimal models of FedU. Theoretically, we show that the convergence rates of both FedU's algorithms achieve linear speedup for strongly convex and sublinear speedup of order $1/2$ for nonconvex objectives. While the analysis of FedU is applicable to both strongly convex and nonconvex loss functions, the conventional FMTL algorithm MOCHA, which is based on CoCoA framework, is only applicable to convex case. Experimentally, we verify that FedU outperforms the vanilla FedAvg, MOCHA, as well as pFedMe and Per-FedAvg in personalized federated learning.
Abstract:In this paper, we investigate the downlink multiple-input-multipleoutput (MIMO) broadcast channels in which a base transceiver station (BTS) broadcasts multiple data streams to K MIMO mobile stations (MSs) simultaneously. In order to maximize the weighted sum-rate (WSR) of the system subject to the transmitted power constraint, the design problem is to find the pre-coding matrices at BTS and the decoding matrices at MSs. However, such a design problem is typically a nonlinear and nonconvex optimization and, thus, it is quite hard to obtain the analytical solutions. To tackle with the mathematical difficulties, we propose an efficient stochastic optimization algorithm to optimize the transceiver matrices. Specifically, we utilize the linear minimum mean square error (MMSE) Wiener filters at MSs. Then, we introduce the constrained particle swarm optimization (PSO) algorithm to jointly optimize the precoding and decoding matrices. Numerical experiments are exhibited to validate the effectiveness of the proposed algorithm in terms of convergence, computational complexity and total WSR.