Abstract:Mixture-of-Experts (MoE) layers have emerged as an important tool in scaling up modern neural networks by decoupling total trainable parameters from activated parameters in the forward pass for each token. However, sparse MoEs add complexity to training due to (i) new trainable parameters (router weights) that, like all other parameter groups, require hyperparameter (HP) tuning; (ii) new architecture scale dimensions (number of and size of experts) that must be chosen and potentially taken large. To make HP selection cheap and reliable, we propose a new parameterization for transformer models with MoE layers when scaling model width, depth, number of experts, and expert (hidden) size. Our parameterization is justified by a novel dynamical mean-field theory (DMFT) analysis. When varying different model dimensions trained at a fixed token budget, we find empirically that our parameterization enables reliable HP transfer across models from 51M to over 2B total parameters. We further take HPs identified from sweeping small models on a short token horizon to train larger models on longer horizons and report performant model behaviors.
Abstract:Given $n$ observations from two balanced classes, consider the task of labeling an additional $m$ inputs that are known to all belong to \emph{one} of the two classes. Special cases of this problem are well-known: with complete knowledge of class distributions ($n=\infty$) the problem is solved optimally by the likelihood-ratio test; when $m=1$ it corresponds to binary classification; and when $m\approx n$ it is equivalent to two-sample testing. The intermediate settings occur in the field of likelihood-free inference, where labeled samples are obtained by running forward simulations and the unlabeled sample is collected experimentally. In recent work it was discovered that there is a fundamental trade-off between $m$ and $n$: increasing the data sample $m$ reduces the amount $n$ of training/simulation data needed. In this work we (a) introduce a generalization where unlabeled samples come from a mixture of the two classes -- a case often encountered in practice; (b) study the minimax sample complexity for non-parametric classes of densities under \textit{maximum mean discrepancy} (MMD) separation; and (c) investigate the empirical performance of kernels parameterized by neural networks on two tasks: detection of the Higgs boson and detection of planted DDPM generated images amidst CIFAR-10 images. For both problems we confirm the existence of the theoretically predicted asymmetric $m$ vs $n$ trade-off.