Abstract:Mobile visual crowdsensing enables large-scale, fine-grained environmental monitoring through the collection of images from distributed mobile devices. However, the resulting data is often redundant and heterogeneous due to overlapping acquisition perspectives, varying resolutions, and diverse user behaviors. To address these challenges, this paper proposes Tri-Select, a multi-stage visual data selection framework that efficiently filters redundant and low-quality images. Tri-Select operates in three stages: (1) metadata-based filtering to discard irrelevant samples; (2) spatial similarity-based spectral clustering to organize candidate images; and (3) a visual-feature-guided selection based on maximum independent set search to retain high-quality, representative images. Experiments on real-world and public datasets demonstrate that Tri-Select improves both selection efficiency and dataset quality, making it well-suited for scalable crowdsensing applications.




Abstract:As unmanned systems such as Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) become increasingly important to applications like urban sensing and emergency response, efficiently recruiting these autonomous devices to perform time-sensitive tasks has become a critical challenge. This paper presents MPBS (Mobility-aware Prediction and Behavior-based Scheduling), a scalable task recruitment framework that treats each device as a recruitable "user". MPBS integrates three key modules: a behavior-aware KNN classifier, a time-varying Markov prediction model for forecasting device mobility, and a dynamic priority scheduling mechanism that considers task urgency and base station performance. By combining behavioral classification with spatiotemporal prediction, MPBS adaptively assigns tasks to the most suitable devices in real time. Experimental evaluations on the real-world GeoLife dataset show that MPBS significantly improves task completion efficiency and resource utilization. The proposed framework offers a predictive, behavior-aware solution for intelligent and collaborative scheduling in unmanned systems.