Abstract:Machine learning has long been considered as a black box for predicting combustion chemical kinetics due to the extremely large number of parameters and the lack of evaluation standards and reproducibility. The current work aims to understand two basic questions regarding the deep neural network (DNN) method: what data the DNN needs and how general the DNN method can be. Sampling and preprocessing determine the DNN training dataset, further affect DNN prediction ability. The current work proposes using Box-Cox transformation (BCT) to preprocess the combustion data. In addition, this work compares different sampling methods with or without preprocessing, including the Monte Carlo method, manifold sampling, generative neural network method (cycle-GAN), and newly-proposed multi-scale sampling. Our results reveal that the DNN trained by the manifold data can capture the chemical kinetics in limited configurations but cannot remain robust toward perturbation, which is inevitable for the DNN coupled with the flow field. The Monte Carlo and cycle-GAN samplings can cover a wider phase space but fail to capture small-scale intermediate species, producing poor prediction results. A three-hidden-layer DNN, based on the multi-scale method without specific flame simulation data, allows predicting chemical kinetics in various scenarios and being stable during the temporal evolutions. This single DNN is readily implemented with several CFD codes and validated in various combustors, including (1). zero-dimensional autoignition, (2). one-dimensional freely propagating flame, (3). two-dimensional jet flame with triple-flame structure, and (4). three-dimensional turbulent lifted flames. The results demonstrate the satisfying accuracy and generalization ability of the pre-trained DNN. The Fortran and Python versions of DNN and example code are attached in the supplementary for reproducibility.
Abstract:A deep learning-based model reduction (DeePMR) method for simplifying chemical kinetics is proposed and validated using high-temperature auto-ignitions, perfectly stirred reactors (PSR), and one-dimensional freely propagating flames of n-heptane/air mixtures. The mechanism reduction is modeled as an optimization problem on Boolean space, where a Boolean vector, each entry corresponding to a species, represents a reduced mechanism. The optimization goal is to minimize the reduced mechanism size given the error tolerance of a group of pre-selected benchmark quantities. The key idea of the DeePMR is to employ a deep neural network (DNN) to formulate the objective function in the optimization problem. In order to explore high dimensional Boolean space efficiently, an iterative DNN-assisted data sampling and DNN training procedure are implemented. The results show that DNN-assistance improves sampling efficiency significantly, selecting only $10^5$ samples out of $10^{34}$ possible samples for DNN to achieve sufficient accuracy. The results demonstrate the capability of the DNN to recognize key species and reasonably predict reduced mechanism performance. The well-trained DNN guarantees the optimal reduced mechanism by solving an inverse optimization problem. By comparing ignition delay times, laminar flame speeds, temperatures in PSRs, the resulting skeletal mechanism has fewer species (45 species) but the same level of accuracy as the skeletal mechanism (56 species) obtained by the Path Flux Analysis (PFA) method. In addition, the skeletal mechanism can be further reduced to 28 species if only considering atmospheric, near-stoichiometric conditions (equivalence ratio between 0.6 and 1.2). The DeePMR provides an innovative way to perform model reduction and demonstrates the great potential of data-driven methods in the combustion area.
Abstract:Developing efficient and accurate algorithms for chemistry integration is a challenging task due to its strong stiffness and high dimensionality. The current work presents a deep learning-based numerical method called DeepCombustion0.0 to solve stiff ordinary differential equation systems. The homogeneous autoignition of DME/air mixture, including 54 species, is adopted as an example to illustrate the validity and accuracy of the algorithm. The training and testing datasets cover a wide range of temperature, pressure, and mixture conditions between 750-1200 K, 30-50 atm, and equivalence ratio = 0.7-1.5. Both the first-stage low-temperature ignition (LTI) and the second-stage high-temperature ignition (HTI) are considered. The methodology highlights the importance of the adaptive data sampling techniques, power transform preprocessing, and binary deep neural network (DNN) design. By using the adaptive random samplings and appropriate power transforms, smooth submanifolds in the state vector phase space are observed, on which two three-layer DNNs can be appropriately trained. The neural networks are end-to-end, which predict temporal gradients of the state vectors directly. The results show that temporal evolutions predicted by DNN agree well with traditional numerical methods in all state vector dimensions, including temperature, pressure, and species concentrations. Besides, the ignition delay time differences are within 1%. At the same time, the CPU time is reduced by more than 20 times and 200 times compared with the HMTS and VODE method, respectively. The current work demonstrates the enormous potential of applying the deep learning algorithm in chemical kinetics and combustion modeling.