Abstract:Cross-lingual transfer is essential for building NLP systems for low-resource African languages, but practitioners lack reliable methods for selecting source languages. We systematically evaluate five embedding similarity metrics across 816 transfer experiments spanning three NLP tasks, three African-centric multilingual models, and 12 languages from four language families. We find that cosine gap and retrieval-based metrics (P@1, CSLS) reliably predict transfer success ($ρ= 0.4-0.6$), while CKA shows negligible predictive power ($ρ\approx 0.1$). Critically, correlation signs reverse when pooling across models (Simpson's Paradox), so practitioners must validate per-model. Embedding metrics achieve comparable predictive power to URIEL linguistic typology. Our results provide concrete guidance for source language selection and highlight the importance of model-specific analysis.
Abstract:Domain-specific question answering remains challenging for language models, given the deep technical knowledge required to answer questions correctly. This difficulty is amplified for smaller language models that cannot encode as much information in their parameters as larger models. The "Specializing Large Language Models for Telecom Networks" challenge aimed to enhance the performance of two small language models, Phi-2 and Falcon-7B in telecommunication question answering. In this paper, we present our question answering systems for this challenge. Our solutions achieved leading marks of 81.9% accuracy for Phi-2 and 57.3% for Falcon-7B. We have publicly released our code and fine-tuned models.