



Abstract:As large language models (LLMs) are increasingly adopted in safety-critical and regulated sectors, the retention of sensitive or prohibited knowledge introduces escalating risks, ranging from privacy leakage to regulatory non-compliance to to potential misuse, and so on. Recent studies suggest that machine unlearning can help ensure deployed models comply with evolving legal, safety, and governance requirements. However, current unlearning techniques assume clean separation between forget and retain datasets, which is challenging in operational settings characterized by highly entangled distributions. In such scenarios, perturbation-based methods often degrade general model utility or fail to ensure safety. To address this, we propose Selective Representation Misdirection for Unlearning (SRMU), a novel principled activation-editing framework that enforces feature-aware and directionally controlled perturbations. Unlike indiscriminate model weights perturbations, SRMU employs a structured misdirection vector with an activation importance map. The goal is to allow SRMU selectively suppresses harmful representations while preserving the utility on benign ones. Experiments are conducted on the widely used WMDP benchmark across low- and high-entanglement configurations. Empirical results reveal that SRMU delivers state-of-the-art unlearning performance with minimal utility losses, and remains effective under 20-30\% overlap where existing baselines collapse. SRMU provides a robust foundation for safety-driven model governance, privacy compliance, and controlled knowledge removal in the emerging LLM-based applications. We release the replication package at https://figshare.com/s/d5931192a8824de26aff.




Abstract:Large language models (LLMs) have seen widespread applications across various domains, yet remain vulnerable to adversarial prompt injections. While most existing research on jailbreak attacks and hallucination phenomena has focused primarily on open-source models, we investigate the frontier of closed-source LLMs under multilingual attack scenarios. We present a first-of-its-kind integrated adversarial framework that leverages diverse attack techniques to systematically evaluate frontier proprietary solutions, including GPT-4o, DeepSeek-R1, Gemini-1.5-Pro, and Qwen-Max. Our evaluation spans six categories of security contents in both English and Chinese, generating 38,400 responses across 32 types of jailbreak attacks. Attack success rate (ASR) is utilized as the quantitative metric to assess performance from three dimensions: prompt design, model architecture, and language environment. Our findings suggest that Qwen-Max is the most vulnerable, while GPT-4o shows the strongest defense. Notably, prompts in Chinese consistently yield higher ASRs than their English counterparts, and our novel Two-Sides attack technique proves to be the most effective across all models. This work highlights a dire need for language-aware alignment and robust cross-lingual defenses in LLMs, and we hope it will inspire researchers, developers, and policymakers toward more robust and inclusive AI systems.