Abstract:Existing AutoML systems have advanced the automation of machine learning (ML); however, they still require substantial manual configuration and expert input, particularly when handling multimodal data. We introduce MLZero, a novel multi-agent framework powered by Large Language Models (LLMs) that enables end-to-end ML automation across diverse data modalities with minimal human intervention. A cognitive perception module is first employed, transforming raw multimodal inputs into perceptual context that effectively guides the subsequent workflow. To address key limitations of LLMs, such as hallucinated code generation and outdated API knowledge, we enhance the iterative code generation process with semantic and episodic memory. MLZero demonstrates superior performance on MLE-Bench Lite, outperforming all competitors in both success rate and solution quality, securing six gold medals. Additionally, when evaluated on our Multimodal AutoML Agent Benchmark, which includes 25 more challenging tasks spanning diverse data modalities, MLZero outperforms the competing methods by a large margin with a success rate of 0.92 (+263.6\%) and an average rank of 2.28. Our approach maintains its robust effectiveness even with a compact 8B LLM, outperforming full-size systems from existing solutions.
Abstract:The diffusion of deepfake technologies has sparked serious concerns about its potential misuse across various domains, prompting the urgent need for robust detection methods. Despite advancement, many current approaches prioritize short-term gains at expense of long-term effectiveness. This paper critiques the overly specialized approach of fine-tuning pre-trained models solely with a penny-wise objective on a single deepfake dataset, while disregarding the pound-wise balance for generalization and knowledge retention. To address this "Penny-Wise and Pound-Foolish" issue, we propose a novel learning framework (PoundNet) for generalization of deepfake detection on a pre-trained vision-language model. PoundNet incorporates a learnable prompt design and a balanced objective to preserve broad knowledge from upstream tasks (object classification) while enhancing generalization for downstream tasks (deepfake detection). We train PoundNet on a standard single deepfake dataset, following common practice in the literature. We then evaluate its performance across 10 public large-scale deepfake datasets with 5 main evaluation metrics-forming the largest benchmark test set for assessing the generalization ability of deepfake detection models, to our knowledge. The comprehensive benchmark evaluation demonstrates the proposed PoundNet is significantly less "Penny-Wise and Pound-Foolish", achieving a remarkable improvement of 19% in deepfake detection performance compared to state-of-the-art methods, while maintaining a strong performance of 63% on object classification tasks, where other deepfake detection models tend to be ineffective. Code and data are open-sourced at https://github.com/iamwangyabin/PoundNet.
Abstract:AutoGluon-Multimodal (AutoMM) is introduced as an open-source AutoML library designed specifically for multimodal learning. Distinguished by its exceptional ease of use, AutoMM enables fine-tuning of foundation models with just three lines of code. Supporting various modalities including image, text, and tabular data, both independently and in combination, the library offers a comprehensive suite of functionalities spanning classification, regression, object detection, semantic matching, and image segmentation. Experiments across diverse datasets and tasks showcases AutoMM's superior performance in basic classification and regression tasks compared to existing AutoML tools, while also demonstrating competitive results in advanced tasks, aligning with specialized toolboxes designed for such purposes.