With the introduction of collaborative robots, humans and robots can now work together in close proximity and share the same workspace. However, this collaboration presents various challenges that need to be addressed to ensure seamless cooperation between the agents. This paper focuses on task planning for human-robot collaboration, taking into account the human's performance and their preference for following or leading. Unlike conventional task allocation methods, the proposed system allows both the robot and human to select and assign tasks to each other. Our previous studies evaluated the proposed framework in a computer simulation environment. This paper extends the research by implementing the algorithm in a real scenario where a human collaborates with a Fetch mobile manipulator robot. We briefly describe the experimental setup, procedure and implementation of the planned user study. As a first step, in this paper, we report on a system evaluation study where the experimenter enacted different possible behaviours in terms of leader/follower preferences that can occur in a user study. Results show that the robot can adapt and respond appropriately to different human agent behaviours, enacted by the experimenter. A future user study will evaluate the system with human participants.
This paper presents a solution for the problem of optimal planning for a robot in a collaborative human-robot team, where the human supervisor is intermittently available to assist the robot in completing tasks more quickly. Specifically, we address the challenge of computing the fastest path between two configurations in an environment with time constraints on how long the robot can wait for assistance. To solve this problem, we propose a novel approach that utilizes the concepts of budget and critical departure times, which enables us to obtain optimal solutions while scaling to larger problem instances than existing methods. We demonstrate the effectiveness of our approach by comparing it with several baseline algorithms on a city road network and analyzing the quality of the solutions obtained. Our work contributes to the field of robot planning by addressing the critical issue of incorporating human assistance and environmental restrictions, which has significant implications for real-world applications.
We study the problem of deploying a fleet of mobile robots to service tasks that arrive stochastically over time and at random locations in an environment. This is known as the Dynamic Vehicle Routing Problem (DVRP) and requires robots to allocate incoming tasks among themselves and find an optimal sequence for each robot. State-of-the-art approaches only consider average wait times and focus on high-load scenarios where the arrival rate of tasks approaches the limit of what can be handled by the robots while keeping the queue of unserviced tasks bounded, i.e., stable. To ensure stability, these approaches repeatedly compute minimum distance tours over a set of newly arrived tasks. This paper is aimed at addressing the missing policies for moderate-load scenarios, where quality of service can be improved by prioritizing long-waiting tasks. We introduce a novel DVRP policy based on a cost function that takes the $p$-norm over accumulated wait times and show it guarantees stability even in high-load scenarios. We demonstrate that the proposed policy outperforms the state-of-the-art in both mean and $95^{th}$ percentile wait times in moderate-load scenarios through simulation experiments in the Euclidean plane as well as using real-world data for city scale service requests.
Human supervisors in multi-robot systems are primarily responsible for monitoring robots, but can also be assigned with secondary tasks. These tasks can act as interruptions and can be categorized as either intrinsic, i.e., being directly related to the monitoring task, or extrinsic, i.e., being unrelated. In this paper, we investigate the impact of these two types of interruptions through a user study ($N=39$), where participants monitor a number of remote mobile robots while intermittently being interrupted by either a robot fault correction task (intrinsic) or a messaging task (extrinsic). We find that task performance of participants does not change significantly with the interruptions but depends greatly on the number of robots. However, interruptions result in an increase in perceived workload, and extrinsic interruptions have a more negative effect on workload across all NASA-TLX scales. Participants also reported switching between extrinsic interruptions and the primary task to be more difficult compared to the intrinsic interruption case. Statistical significance of these results is confirmed using ANOVA and one-sample t-test. These findings suggest that when deciding task assignment in such supervision systems, one should limit interruptions from secondary tasks, especially extrinsic ones, in order to limit user workload.
In this paper we study multi-robot path planning for persistent monitoring tasks. We consider the case where robots have a limited battery capacity with a discharge time $D$. We represent the areas to be monitored as the vertices of a weighted graph. For each vertex, there is a constraint on the maximum allowable time between robot visits, called the latency. The objective is to find the minimum number of robots that can satisfy these latency constraints while also ensuring that the robots periodically charge at a recharging depot. The decision version of this problem is known to be PSPACE-complete. We present a $O(\frac{\log D}{\log \log D}\log \rho)$ approximation algorithm for the problem where $\rho$ is the ratio of the maximum and the minimum latency constraints. We also present an orienteering based heuristic to solve the problem and show empirically that it typically provides higher quality solutions than the approximation algorithm. We extend our results to provide an algorithm for the problem of minimizing the maximum weighted latency given a fixed number of robots. We evaluate our algorithms on large problem instances in a patrolling scenario and in a wildfire monitoring application. We also compare the algorithms with an existing solver on benchmark instances.
Vessel transit in ice-covered waters poses unique challenges in safe and efficient motion planning. When the concentration of ice is high, it may not be possible to find collision-free trajectories. Instead, ice can be pushed out of the way if it is small or if contact occurs near the edge of the ice. In this work, we propose a real-time navigation framework that minimizes collisions with ice and distance travelled by the vessel. We exploit a lattice-based planner with a cost that captures the ship interaction with ice. To address the dynamic nature of the environment, we plan motion in a receding horizon manner based on updated vessel and ice state information. Further, we present a novel planning heuristic for evaluating the cost-to-go, which is applicable to navigation in a channel without a fixed goal location. The performance of our planner is evaluated across several levels of ice concentration both in simulated and in real-world experiments.
This article presents a survey of literature in the area of Human-Robot Interaction (HRI), specifically on systems containing more than two agents (i.e., having multiple humans and/or multiple robots). We identify three core aspects of ``Multi-agent" HRI systems that are useful for understanding how these systems differ from dyadic systems and from one another. These are the Team structure, Interaction style among agents, and the system's Computational characteristics. Under these core aspects, we present five attributes of HRI systems, namely Team size, Team composition, Interaction model, Communication modalities, and Robot control. These attributes are used to characterize and distinguish one system from another. We populate resulting categories with examples from recent literature along with a brief discussion of their applications and analyze how these attributes differ from the case of dyadic human-robot systems. We summarize key observations from the current literature, and identify challenges and promising areas for future research in this domain. In order to realize the vision of robots being part of the society and interacting seamlessly with humans, there is a need to expand research on multi-human -- multi-robot systems. Not only do these systems require coordination among several agents, they also involve multi-agent and indirect interactions which are absent from dyadic HRI systems. Adding multiple agents in HRI systems requires advanced interaction schemes, behavior understanding and control methods to allow natural interactions among humans and robots. In addition, research on human behavioral understanding in mixed human-robot teams also requires more attention. This will help formulate and implement effective robot control policies in HRI systems with large numbers of heterogeneous robots and humans; a team composition reflecting many real-world scenarios.
We study the sample placement and shortest tour problem for robots tasked with mapping environmental phenomena modeled as stationary random fields. The objective is to minimize the resources used (samples or tour length) while guaranteeing estimation accuracy. We give approximation algorithms for both problems in convex environments. These improve previously known results, both in terms of theoretical guarantees and in simulations. In addition, we disprove an existing claim in the literature on a lower bound for a solution to the sample placement problem.
In this paper, we consider the problem of allocating human operator assistance in a system with multiple autonomous robots. Each robot is required to complete independent missions, each defined as a sequence of tasks. While executing a task, a robot can either operate autonomously or be teleoperated by the human operator to complete the task at a faster rate. We show that the problem of creating a teleoperation schedule that minimizes makespan of the system is NP-Hard. We formulate our problem as a Mixed Integer Linear Program, which can be used to optimally solve small to moderate sized problem instances. We also develop an anytime algorithm that makes use of the problem structure to provide a fast and high-quality solution of the operator scheduling problem, even for larger problem instances. Our key insight is to identify blocking tasks in greedily-created schedules and iteratively remove those blocks to improve the quality of the solution. Through numerical simulations, we demonstrate the benefits of the proposed algorithm as an efficient and scalable approach that outperforms other greedy methods.
Many problems in robotics seek to simultaneously optimize several competing objectives under constraints. A conventional approach to solving such multi-objective optimization problems is to create a single cost function comprised of the weighted sum of the individual objectives. Solutions to this scalarized optimization problem are Pareto optimal solutions to the original multi-objective problem. However, finding an accurate representation of a Pareto front remains an important challenge. Using uniformly spaced weight vectors is often inefficient and does not provide error bounds. Thus, we address the problem of computing a finite set of weight vectors such that for any other weight vector, there exists an element in the set whose error compared to optimal is minimized. To this end, we prove fundamental properties of the optimal cost as a function of the weight vector, including its continuity and concavity. Using these, we propose an algorithm that greedily adds the weight vector least-represented by the current set, and provide bounds on the error. Finally, we illustrate that the proposed approach significantly outperforms uniformly distributed weights for different robot planning problems with varying numbers of objective functions.