Jack
Abstract:Rigorous evaluation of large language models (LLMs) relies on comparing models by the prevalence of desirable or undesirable behaviors, such as task pass rates or policy violations. These prevalence estimates are produced by a classifier, either an LLM-as-a-judge or human annotators, making the choice of classifier central to trustworthy evaluation. Common metrics used for this choice, such as Accuracy, Precision, and F1, are sensitive to class imbalance and to arbitrary choices of positive class, and can favor judges that distort prevalence estimates. We show that Youden's $J$ statistic is theoretically aligned with choosing the best judge to compare models, and that Balanced Accuracy is an equivalent linear transformation of $J$. Through both analytical arguments and empirical examples and simulations, we demonstrate how selecting judges using Balanced Accuracy leads to better, more robust classifier selection.
Abstract:Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a new set of foundation models, called Llama 3. It is a herd of language models that natively support multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with 405B parameters and a context window of up to 128K tokens. This paper presents an extensive empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input and output safety. The paper also presents the results of experiments in which we integrate image, video, and speech capabilities into Llama 3 via a compositional approach. We observe this approach performs competitively with the state-of-the-art on image, video, and speech recognition tasks. The resulting models are not yet being broadly released as they are still under development.