Alert button
Picture for Stefan Denkovski

Stefan Denkovski

Alert button

Multi Visual Modality Fall Detection Dataset

Jun 25, 2022
Stefan Denkovski, Shehroz S. Khan, Brandon Malamis, Sae Young Moon, Bing Ye, Alex Mihailidis

Figure 1 for Multi Visual Modality Fall Detection Dataset
Figure 2 for Multi Visual Modality Fall Detection Dataset
Figure 3 for Multi Visual Modality Fall Detection Dataset
Figure 4 for Multi Visual Modality Fall Detection Dataset

Falls are one of the leading cause of injury-related deaths among the elderly worldwide. Effective detection of falls can reduce the risk of complications and injuries. Fall detection can be performed using wearable devices or ambient sensors; these methods may struggle with user compliance issues or false alarms. Video cameras provide a passive alternative; however, regular RGB cameras are impacted by changing lighting conditions and privacy concerns. From a machine learning perspective, developing an effective fall detection system is challenging because of the rarity and variability of falls. Many existing fall detection datasets lack important real-world considerations, such as varied lighting, continuous activities of daily living (ADLs), and camera placement. The lack of these considerations makes it difficult to develop predictive models that can operate effectively in the real world. To address these limitations, we introduce a novel multi-modality dataset (MUVIM) that contains four visual modalities: infra-red, depth, RGB and thermal cameras. These modalities offer benefits such as obfuscated facial features and improved performance in low-light conditions. We formulated fall detection as an anomaly detection problem, in which a customized spatio-temporal convolutional autoencoder was trained only on ADLs so that a fall would increase the reconstruction error. Our results showed that infra-red cameras provided the highest level of performance (AUC ROC=0.94), followed by thermal (AUC ROC=0.87), depth (AUC ROC=0.86) and RGB (AUC ROC=0.83). This research provides a unique opportunity to analyze the utility of camera modalities in detecting falls in a home setting while balancing performance, passiveness, and privacy.

Viaarxiv icon

Multiple Sclerosis Severity Classification From Clinical Text

Oct 29, 2020
Alister D Costa, Stefan Denkovski, Michal Malyska, Sae Young Moon, Brandon Rufino, Zhen Yang, Taylor Killian, Marzyeh Ghassemi

Figure 1 for Multiple Sclerosis Severity Classification From Clinical Text
Figure 2 for Multiple Sclerosis Severity Classification From Clinical Text
Figure 3 for Multiple Sclerosis Severity Classification From Clinical Text
Figure 4 for Multiple Sclerosis Severity Classification From Clinical Text

Multiple Sclerosis (MS) is a chronic, inflammatory and degenerative neurological disease, which is monitored by a specialist using the Expanded Disability Status Scale (EDSS) and recorded in unstructured text in the form of a neurology consult note. An EDSS measurement contains an overall "EDSS" score and several functional subscores. Typically, expert knowledge is required to interpret consult notes and generate these scores. Previous approaches used limited context length Word2Vec embeddings and keyword searches to predict scores given a consult note, but often failed when scores were not explicitly stated. In this work, we present MS-BERT, the first publicly available transformer model trained on real clinical data other than MIMIC. Next, we present MSBC, a classifier that applies MS-BERT to generate embeddings and predict EDSS and functional subscores. Lastly, we explore combining MSBC with other models through the use of Snorkel to generate scores for unlabelled consult notes. MSBC achieves state-of-the-art performance on all metrics and prediction tasks and outperforms the models generated from the Snorkel ensemble. We improve Macro-F1 by 0.12 (to 0.88) for predicting EDSS and on average by 0.29 (to 0.63) for predicting functional subscores over previous Word2Vec CNN and rule-based approaches.

* EMNLP 2020 Clinical NLP workshop 
Viaarxiv icon