Picture for Stefan B. Ploner

Stefan B. Ploner

Friedrich-Alexander-Universität Erlangen-Nürnberg Germany

Retinal blood flow speed quantification at the capillary level using temporal autocorrelation fitting OCTA

Add code
Feb 22, 2023
Figure 1 for Retinal blood flow speed quantification at the capillary level using temporal autocorrelation fitting OCTA
Figure 2 for Retinal blood flow speed quantification at the capillary level using temporal autocorrelation fitting OCTA
Figure 3 for Retinal blood flow speed quantification at the capillary level using temporal autocorrelation fitting OCTA
Figure 4 for Retinal blood flow speed quantification at the capillary level using temporal autocorrelation fitting OCTA
Viaarxiv icon

Maximum a posteriori signal recovery for optical coherence tomography angiography image generation and denoising

Add code
Oct 29, 2020
Figure 1 for Maximum a posteriori signal recovery for optical coherence tomography angiography image generation and denoising
Figure 2 for Maximum a posteriori signal recovery for optical coherence tomography angiography image generation and denoising
Figure 3 for Maximum a posteriori signal recovery for optical coherence tomography angiography image generation and denoising
Figure 4 for Maximum a posteriori signal recovery for optical coherence tomography angiography image generation and denoising
Viaarxiv icon

Efficient and high accuracy 3-D OCT angiography motion correction in pathology

Add code
Oct 14, 2020
Figure 1 for Efficient and high accuracy 3-D OCT angiography motion correction in pathology
Figure 2 for Efficient and high accuracy 3-D OCT angiography motion correction in pathology
Figure 3 for Efficient and high accuracy 3-D OCT angiography motion correction in pathology
Figure 4 for Efficient and high accuracy 3-D OCT angiography motion correction in pathology
Viaarxiv icon