Abstract:Monocular 3D hand mesh recovery is challenging due to high degrees of freedom of hands, 2D-to-3D ambiguity and self-occlusion. Most existing methods are either inefficient or less straightforward for predicting the position of 3D mesh vertices. Thus, we propose a new pipeline called Monocular 3D Hand Mesh Recovery (M3DHMR) to directly estimate the positions of hand mesh vertices. M3DHMR provides 2D cues for 3D tasks from a single image and uses a new spiral decoder consist of several Dynamic Spiral Convolution (DSC) Layers and a Region of Interest (ROI) Layer. On the one hand, DSC Layers adaptively adjust the weights based on the vertex positions and extract the vertex features in both spatial and channel dimensions. On the other hand, ROI Layer utilizes the physical information and refines mesh vertices in each predefined hand region separately. Extensive experiments on popular dataset FreiHAND demonstrate that M3DHMR significantly outperforms state-of-the-art real-time methods.
Abstract:The creation of increasingly vivid 3D virtual digital humans has become a hot topic in recent years. Currently, most speech-driven work focuses on training models to learn the relationship between phonemes and visemes to achieve more realistic lips. However, they fail to capture the correlations between emotions and facial expressions effectively. To solve this problem, we propose a new model, termed EmoFace. EmoFace employs a novel Mesh Attention mechanism, which helps to learn potential feature dependencies between mesh vertices in time and space. We also adopt, for the first time to our knowledge, an effective self-growing training scheme that combines teacher-forcing and scheduled sampling in a 3D face animation task. Additionally, since EmoFace is an autoregressive model, there is no requirement that the first frame of the training data must be a silent frame, which greatly reduces the data limitations and contributes to solve the current dilemma of insufficient datasets. Comprehensive quantitative and qualitative evaluations on our proposed high-quality reconstructed 3D emotional facial animation dataset, 3D-RAVDESS ($5.0343\times 10^{-5}$mm for LVE and $1.0196\times 10^{-5}$mm for EVE), and publicly available dataset VOCASET ($2.8669\times 10^{-5}$mm for LVE and $0.4664\times 10^{-5}$mm for EVE), demonstrate that our algorithm achieves state-of-the-art performance.
Abstract:3D speech-driven facial animation generation has received much attention in both industrial applications and academic research. Since the non-verbal facial cues that exist across the face in reality are non-deterministic, the generated results should be diverse. However, most recent methods are deterministic models that cannot learn a many-to-many mapping between audio and facial motion to generate diverse facial animations. To address this problem, we propose GLDiTalker, which introduces a motion prior along with some stochasticity to reduce the uncertainty of cross-modal mapping while increasing non-determinacy of the non-verbal facial cues that reside throughout the face. Particularly, GLDiTalker uses VQ-VAE to map facial motion mesh sequences into latent space in the first stage, and then iteratively adds and removes noise to the latent facial motion features in the second stage. In order to integrate different levels of spatial information, the Spatial Pyramidal SpiralConv Encoder is also designed to extract multi-scale features. Extensive qualitative and quantitative experiments demonstrate that our method achieves the state-of-the-art performance.