Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Abstract:We study the generalization capabilities of Message Passing Neural Networks (MPNNs), a prevalent class of Graph Neural Networks (GNN). We derive generalization bounds specifically for MPNNs with normalized sum aggregation and mean aggregation. Our analysis is based on a data generation model incorporating a finite set of template graphons. Each graph within this framework is generated by sampling from one of the graphons with a certain degree of perturbation. In particular, we extend previous MPNN generalization results to a more realistic setting, which includes the following modifications: 1) we analyze simple random graphs with Bernoulli-distributed edges instead of weighted graphs; 2) we sample both graphs and graph signals from perturbed graphons instead of clean graphons; and 3) we analyze sparse graphs instead of dense graphs. In this more realistic and challenging scenario, we provide a generalization bound that decreases as the average number of nodes in the graphs increases. Our results imply that MPNNs with higher complexity than the size of the training set can still generalize effectively, as long as the graphs are sufficiently large.

Via

Abstract:We introduce $r$-loopy Weisfeiler-Leman ($r$-$\ell{}$WL), a novel hierarchy of graph isomorphism tests and a corresponding GNN framework, $r$-$\ell{}$MPNN, that can count cycles up to length $r + 2$. Most notably, we show that $r$-$\ell{}$WL can count homomorphisms of cactus graphs. This strictly extends classical 1-WL, which can only count homomorphisms of trees and, in fact, is incomparable to $k$-WL for any fixed $k$. We empirically validate the expressive and counting power of the proposed $r$-$\ell{}$MPNN on several synthetic datasets and present state-of-the-art predictive performance on various real-world datasets. The code is available at https://github.com/RPaolino/loopy

Via

Abstract:Graph neural networks (GNNs) have shown state-of-the-art performances in various applications. However, GNNs often struggle to capture long-range dependencies in graphs due to oversmoothing. In this paper, we generalize the concept of oversmoothing from undirected to directed graphs. To this aim, we extend the notion of Dirichlet energy by considering a directed symmetrically normalized Laplacian. As vanilla graph convolutional networks are prone to oversmooth, we adopt a neural graph ODE framework. Specifically, we propose fractional graph Laplacian neural ODEs, which describe non-local dynamics. We prove that our approach allows propagating information between distant nodes while maintaining a low probability of long-distance jumps. Moreover, we show that our method is more flexible with respect to the convergence of the graph's Dirichlet energy, thereby mitigating oversmoothing. We conduct extensive experiments on synthetic and real-world graphs, both directed and undirected, demonstrating our method's versatility across diverse graph homophily levels. Our code is available at https://github.com/RPaolino/fLode .

Via

Abstract:Graph neural networks (GNNs) are the primary tool for processing graph-structured data. Unfortunately, the most commonly used GNNs, called Message Passing Neural Networks (MPNNs) suffer from several fundamental limitations. To overcome these limitations, recent works have adapted the idea of positional encodings to graph data. This paper draws inspiration from the recent success of Laplacian-based positional encoding and defines a novel family of positional encoding schemes for graphs. We accomplish this by generalizing the optimization problem that defines the Laplace embedding to more general dissimilarity functions rather than the 2-norm used in the original formulation. This family of positional encodings is then instantiated by considering p-norms. We discuss a method for calculating these positional encoding schemes, implement it in PyTorch and demonstrate how the resulting positional encoding captures different properties of the graph. Furthermore, we demonstrate that this novel family of positional encodings can improve the expressive power of MPNNs. Lastly, we present preliminary experimental results.

Via

Figures and Tables:

Abstract:Message passing neural networks (MPNN) have seen a steep rise in popularity since their introduction as generalizations of convolutional neural networks to graph structured data, and are now considered state-of-the-art tools for solving a large variety of graph-focused problems. We study the generalization capabilities of MPNNs in graph classification. We assume that graphs of different classes are sampled from different random graph models. Based on this data distribution, we derive a non-asymptotic bound on the generalization gap between the empirical and statistical loss, that decreases to zero as the graphs become larger. This is proven by showing that a MPNN, applied on a graph, approximates the MPNN applied on the geometric model that the graph discretizes.

Via

Abstract:We study spectral graph convolutional neural networks (GCNNs), where filters are defined as continuous functions of the graph shift operator (GSO) through functional calculus. A spectral GCNN is not tailored to one specific graph and can be transferred between different graphs. It is hence important to study the GCNN transferability: the capacity of the network to have approximately the same repercussion on different graphs that represent the same phenomenon. Transferability ensures that GCNNs trained on certain graphs generalize if the graphs in the test set represent the same phenomena as the graphs in the training set. In this paper, we consider a model of transferability based on graphon analysis. Graphons are limit objects of graphs, and, in the graph paradigm, two graphs represent the same phenomenon if both approximate the same graphon. Our main contributions can be summarized as follows: 1) we prove that any fixed GCNN with continuous filters is transferable under graphs that approximate the same graphon, 2) we prove transferability for graphs that approximate unbounded graphon shift operators, which are defined in this paper, and, 3) we obtain non-asymptotic approximation results, proving linear stability of GCNNs. This extends current state-of-the-art results which show asymptotic transferability for polynomial filters under graphs that approximate bounded graphons.

Via