Kingsley
Abstract:Federated Learning has gained traction in privacy-sensitive collaborative environments, with local SGD emerging as a key optimization method in decentralized settings. While its convergence properties are well-studied, asymptotic statistical guarantees beyond convergence remain limited. In this paper, we present two generalized Gaussian approximation results for local SGD and explore their implications. First, we prove a Berry-Esseen theorem for the final local SGD iterates, enabling valid multiplier bootstrap procedures. Second, motivated by robustness considerations, we introduce two distinct time-uniform Gaussian approximations for the entire trajectory of local SGD. The time-uniform approximations support Gaussian bootstrap-based tests for detecting adversarial attacks. Extensive simulations are provided to support our theoretical results.
Abstract:In-context learning (ICL)-the ability of transformer-based models to perform new tasks from examples provided at inference time-has emerged as a hallmark of modern language models. While recent works have investigated the mechanisms underlying ICL, its feasibility under formal privacy constraints remains largely unexplored. In this paper, we propose a differentially private pretraining algorithm for linear attention heads and present the first theoretical analysis of the privacy-accuracy trade-off for ICL in linear regression. Our results characterize the fundamental tension between optimization and privacy-induced noise, formally capturing behaviors observed in private training via iterative methods. Additionally, we show that our method is robust to adversarial perturbations of training prompts, unlike standard ridge regression. All theoretical findings are supported by extensive simulations across diverse settings.