Abstract:Communication among humans relies on conversational grounding, allowing interlocutors to reach mutual understanding even when they do not have perfect knowledge and must resolve discrepancies in each other's beliefs. This paper investigates how large language models (LLMs) manage common ground in cases where they (don't) possess knowledge, focusing on facts in the political domain where the risk of misinformation and grounding failure is high. We examine the ability of LLMs to answer direct knowledge questions and loaded questions that presuppose misinformation. We evaluate whether loaded questions lead LLMs to engage in active grounding and correct false user beliefs, in connection to their level of knowledge and their political bias. Our findings highlight significant challenges in LLMs' ability to engage in grounding and reject false user beliefs, raising concerns about their role in mitigating misinformation in political discourse.
Abstract:This paper examines how LLMs handle false presuppositions and whether certain linguistic factors influence their responses to falsely presupposed content. Presuppositions subtly introduce information as given, making them highly effective at embedding disputable or false information. This raises concerns about whether LLMs, like humans, may fail to detect and correct misleading assumptions introduced as false presuppositions, even when the stakes of misinformation are high. Using a systematic approach based on linguistic presupposition analysis, we investigate the conditions under which LLMs are more or less sensitive to adopt or reject false presuppositions. Focusing on political contexts, we examine how factors like linguistic construction, political party, and scenario probability impact the recognition of false presuppositions. We conduct experiments with a newly created dataset and examine three LLMs: OpenAI's GPT-4-o, Meta's LLama-3-8B, and MistralAI's Mistral-7B-v03. Our results show that the models struggle to recognize false presuppositions, with performance varying by condition. This study highlights that linguistic presupposition analysis is a valuable tool for uncovering the reinforcement of political misinformation in LLM responses.
Abstract:We investigate the use of LLM-generated data for continual pretraining of encoder models in specialized domains with limited training data, using the scientific domain of invasion biology as a case study. To this end, we leverage domain-specific ontologies by enriching them with LLM-generated data and pretraining the encoder model as an ontology-informed embedding model for concept definitions. To evaluate the effectiveness of this method, we compile a benchmark specifically designed for assessing model performance in invasion biology. After demonstrating substantial improvements over standard LLM pretraining, we investigate the feasibility of applying the proposed approach to domains without comprehensive ontologies by substituting ontological concepts with concepts automatically extracted from a small corpus of scientific abstracts and establishing relationships between concepts through distributional statistics. Our results demonstrate that this automated approach achieves comparable performance using only a small set of scientific abstracts, resulting in a fully automated pipeline for enhancing domain-specific understanding of small encoder models that is especially suited for application in low-resource settings and achieves performance comparable to masked language modeling pretraining on much larger datasets.
Abstract:We analyze the influence of utterance-level construction distributions in German child-directed speech on the resulting formal linguistic competence and the underlying learning trajectories for small language models trained on a novel collection of developmentally plausible language data for German. We find that trajectories are surprisingly robust for markedly different distributions of constructions in the training data, which have little effect on final accuracies and almost no effect on global learning trajectories. While syntax learning benefits from more complex utterances, lexical learning culminates in better scores with more fragmentary data. We argue that LMs trained on developmentally plausible data can contribute to debates on how rich or impoverished linguistic stimuli actually are.
Abstract:We study word learning in subword and character language models with the psycholinguistic lexical decision task. While subword LMs struggle to discern words and non-words with high accuracy, character LMs solve this task easily and consistently. Furthermore, when comparing word learning and syntactic learning, both processes are separable in character LM where word learning predates syntactic learning, whereas these processes are simultaneous in subword LM. This raises questions about the adequacy of subword LMs for modeling language acquisition and positions character LMs as a viable alternative.
Abstract:This study explores strategies for efficiently classifying scientific full texts using both small, BERT-based models and local large language models like Llama-3.1 8B. We focus on developing methods for selecting subsets of input sentences to reduce input size while simultaneously enhancing classification performance. To this end, we compile a novel dataset consisting of full-text scientific papers from the field of invasion biology, specifically addressing the impacts of invasive species. These papers are aligned with publicly available impact assessments created by researchers for the International Union for Conservation of Nature (IUCN). Through extensive experimentation, we demonstrate that various sources like human evidence annotations, LLM-generated annotations or explainability scores can be used to train sentence selection models that improve the performance of both encoder- and decoder-based language models while optimizing efficiency through the reduction in input length, leading to improved results even if compared to models like ModernBERT that are able to handle the complete text as input. Additionally, we find that repeated sampling of shorter inputs proves to be a very effective strategy that, at a slightly increased cost, can further improve classification performance.
Abstract:This paper presents an exploratory study that harnesses the capabilities of large language models (LLMs) to mine key ecological entities from invasion biology literature. Specifically, we focus on extracting species names, their locations, associated habitats, and ecosystems, information that is critical for understanding species spread, predicting future invasions, and informing conservation efforts. Traditional text mining approaches often struggle with the complexity of ecological terminology and the subtle linguistic patterns found in these texts. By applying general-purpose LLMs without domain-specific fine-tuning, we uncover both the promise and limitations of using these models for ecological entity extraction. In doing so, this study lays the groundwork for more advanced, automated knowledge extraction tools that can aid researchers and practitioners in understanding and managing biological invasions.
Abstract:We apply NER to a particular sub-genre of legal texts in German: the genre of legal norms regulating administrative processes in public service administration. The analysis of such texts involves identifying stretches of text that instantiate one of ten classes identified by public service administration professionals. We investigate and compare three methods for performing Named Entity Recognition (NER) to detect these classes: a Rule-based system, deep discriminative models, and a deep generative model. Our results show that Deep Discriminative models outperform both the Rule-based system as well as the Deep Generative model, the latter two roughly performing equally well, outperforming each other in different classes. The main cause for this somewhat surprising result is arguably the fact that the classes used in the analysis are semantically and syntactically heterogeneous, in contrast to the classes used in more standard NER tasks. Deep Discriminative models appear to be better equipped for dealing with this heterogenerity than both generic LLMs and human linguists designing rule-based NER systems.
Abstract:Current language models use subword-based tokenization algorithms like Byte Pair Encoding, which put their validity as models of linguistic representations into question. In this paper, we explore the potential of tokenization-free, phoneme- and grapheme-based language models. We demonstrate that small models based on the Llama architecture can achieve strong linguistic performance on standard syntactic and novel lexical/phonetic benchmarks when trained with character-level vocabularies. We further show that phoneme-based models without any graphemic biases almost match grapheme-based models in standard tasks and novel evaluations. Our findings suggest a promising direction for creating more linguistically plausible language models that are better suited for computational studies of language acquisition and processing.
Abstract:We examine how users perceive the limitations of an AI system when it encounters a task that it cannot perform perfectly and whether providing explanations alongside its answers aids users in constructing an appropriate mental model of the system's capabilities and limitations. We employ a visual question answer and explanation task where we control the AI system's limitations by manipulating the visual inputs: during inference, the system either processes full-color or grayscale images. Our goal is to determine whether participants can perceive the limitations of the system. We hypothesize that explanations will make limited AI capabilities more transparent to users. However, our results show that explanations do not have this effect. Instead of allowing users to more accurately assess the limitations of the AI system, explanations generally increase users' perceptions of the system's competence - regardless of its actual performance.