Abstract:In human conversation, both interlocutors play an active role in maintaining mutual understanding. When addressees are uncertain about what speakers mean, for example, they can request clarification. It is an open question for language models whether they can assume a similar addressee role, recognizing and expressing their own uncertainty through clarification. We argue that reference games are a good testbed to approach this question as they are controlled, self-contained, and make clarification needs explicit and measurable. To test this, we evaluate three vision-language models comparing a baseline reference resolution task to an experiment where the models are instructed to request clarification when uncertain. The results suggest that even in such simple tasks, models often struggle to recognize internal uncertainty and translate it into adequate clarification behavior. This demonstrates the value of reference games as testbeds for interaction qualities of (vision and) language models.
Abstract:We investigate whether pre-training exclusively on dialogue data results in formally and functionally apt small language models. Based on this pre-trained llamalogue model, we employ a variety of fine-tuning strategies to enforce "more communicative" text generations by our models. Although our models underperform on most standard BabyLM benchmarks, they excel at dialogue continuation prediction in a minimal pair setting. While PPO fine-tuning has mixed to adversarial effects on our models, DPO fine-tuning further improves their performance on our custom dialogue benchmark.
Abstract:We investigate the linguistic abilities of multimodal large language models in reference resolution tasks featuring simple yet abstract visual stimuli, such as color patches and color grids. Although the task may not seem challenging for today's language models, being straightforward for human dyads, we consider it to be a highly relevant probe of the pragmatic capabilities of MLLMs. Our results and analyses indeed suggest that basic pragmatic capabilities, such as context-dependent interpretation of color descriptions, still constitute major challenges for state-of-the-art MLLMs.