Abstract:Image de-identification is essential for the public sharing of medical images, particularly in the widely used Digital Imaging and Communications in Medicine (DICOM) format as required by various regulations and standards, including Health Insurance Portability and Accountability Act (HIPAA) privacy rules, the DICOM PS3.15 standard, and best practices recommended by the Cancer Imaging Archive (TCIA). The Medical Image De-Identification Benchmark (MIDI-B) Challenge at the 27th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2024) was organized to evaluate rule-based DICOM image de-identification algorithms with a large dataset of clinical DICOM images. In this report, we explore the critical challenges of de-identifying DICOM images, emphasize the importance of removing personally identifiable information (PII) to protect patient privacy while ensuring the continued utility of medical data for research, diagnostics, and treatment, and provide a comprehensive overview of the standards and regulations that govern this process. Additionally, we detail the de-identification methods we applied - such as pixel masking, date shifting, date hashing, text recognition, text replacement, and text removal - to process datasets during the test phase in strict compliance with these standards. According to the final leaderboard of the MIDI-B challenge, the latest version of our solution algorithm correctly executed 99.92% of the required actions and ranked 2nd out of 10 teams that completed the challenge (from a total of 22 registered teams). Finally, we conducted a thorough analysis of the resulting statistics and discussed the limitations of current approaches and potential avenues for future improvement.
Abstract:The de-identification (deID) of protected health information (PHI) and personally identifiable information (PII) is a fundamental requirement for sharing medical images, particularly through public repositories, to ensure compliance with patient privacy laws. In addition, preservation of non-PHI metadata to inform and enable downstream development of imaging artificial intelligence (AI) is an important consideration in biomedical research. The goal of MIDI-B was to provide a standardized platform for benchmarking of DICOM image deID tools based on a set of rules conformant to the HIPAA Safe Harbor regulation, the DICOM Attribute Confidentiality Profiles, and best practices in preservation of research-critical metadata, as defined by The Cancer Imaging Archive (TCIA). The challenge employed a large, diverse, multi-center, and multi-modality set of real de-identified radiology images with synthetic PHI/PII inserted. The MIDI-B Challenge consisted of three phases: training, validation, and test. Eighty individuals registered for the challenge. In the training phase, we encouraged participants to tune their algorithms using their in-house or public data. The validation and test phases utilized the DICOM images containing synthetic identifiers (of 216 and 322 subjects, respectively). Ten teams successfully completed the test phase of the challenge. To measure success of a rule-based approach to image deID, scores were computed as the percentage of correct actions from the total number of required actions. The scores ranged from 97.91% to 99.93%. Participants employed a variety of open-source and proprietary tools with customized configurations, large language models, and optical character recognition (OCR). In this paper we provide a comprehensive report on the MIDI-B Challenge's design, implementation, results, and lessons learned.
Abstract:The visibility of real-world images is often limited by both low-light and low-resolution, however, these issues are only addressed in the literature through Low-Light Enhancement (LLE) and Super- Resolution (SR) methods. Admittedly, a simple cascade of these approaches cannot work harmoniously to cope well with the highly ill-posed problem for simultaneously enhancing visibility and resolution. In this paper, we propose a normalizing flow network, dubbed LoLiSRFLow, specifically designed to consider the degradation mechanism inherent in joint LLE and SR. To break the bonds of the one-to-many mapping for low-light low-resolution images to normal-light high-resolution images, LoLiSRFLow directly learns the conditional probability distribution over a variety of feasible solutions for high-resolution well-exposed images. Specifically, a multi-resolution parallel transformer acts as a conditional encoder that extracts the Retinex-induced resolution-and-illumination invariant map as the previous one. And the invertible network maps the distribution of usually exposed high-resolution images to a latent distribution. The backward inference is equivalent to introducing an additional constrained loss for the normal training route, thus enabling the manifold of the natural exposure of the high-resolution image to be immaculately depicted. We also propose a synthetic dataset modeling the realistic low-light low-resolution degradation, named DFSR-LLE, containing 7100 low-resolution dark-light/high-resolution normal sharp pairs. Quantitative and qualitative experimental results demonstrate the effectiveness of our method on both the proposed synthetic and real datasets.
Abstract:Super-resolution tasks oriented to images captured in ultra-dark environments is a practical yet challenging problem that has received little attention. Due to uneven illumination and low signal-to-noise ratio in dark environments, a multitude of problems such as lack of detail and color distortion may be magnified in the super-resolution process compared to normal-lighting environments. Consequently, conventional low-light enhancement or super-resolution methods, whether applied individually or in a cascaded manner for such problem, often encounter limitations in recovering luminance, color fidelity, and intricate details. To conquer these issues, this paper proposes a specialized dual-modulated learning framework that, for the first time, attempts to deeply dissect the nature of the low-light super-resolution task. Leveraging natural image color characteristics, we introduce a self-regularized luminance constraint as a prior for addressing uneven lighting. Expanding on this, we develop Illuminance-Semantic Dual Modulation (ISDM) components to enhance feature-level preservation of illumination and color details. Besides, instead of deploying naive up-sampling strategies, we design the Resolution-Sensitive Merging Up-sampler (RSMU) module that brings together different sampling modalities as substrates, effectively mitigating the presence of artifacts and halos. Comprehensive experiments showcases the applicability and generalizability of our approach to diverse and challenging ultra-low-light conditions, outperforming state-of-the-art methods with a notable improvement (i.e., $\uparrow$5\% in PSNR, and $\uparrow$43\% in LPIPS). Especially noteworthy is the 19-fold increase in the RMSE score, underscoring our method's exceptional generalization across different darkness levels. The code will be available online upon publication of the paper.