Abstract:Automation of sleep analysis, including both macrostructural (sleep stages) and microstructural (e.g., sleep spindles) elements, promises to enable large-scale sleep studies and to reduce variance due to inter-rater incongruencies. While individual steps, such as sleep staging and spindle detection, have been studied separately, the feasibility of automating multi-step sleep analysis remains unclear. Here, we evaluate whether a fully automated analysis using state-of-the-art machine learning models for sleep staging (RobustSleepNet) and subsequent spindle detection (SUMOv2) can replicate findings from an expert-based study of bipolar disorder. The automated analysis qualitatively reproduced key findings from the expert-based study, including significant differences in fast spindle densities between bipolar patients and healthy controls, accomplishing in minutes what previously took months to complete manually. While the results of the automated analysis differed quantitatively from the expert-based study, possibly due to biases between expert raters or between raters and the models, the models individually performed at or above inter-rater agreement for both sleep staging and spindle detection. Our results demonstrate that fully automated approaches have the potential to facilitate large-scale sleep research. We are providing public access to the tools used in our automated analysis by sharing our code and introducing SomnoBot, a privacy-preserving sleep analysis platform.
Abstract:Sleep spindles are neurophysiological phenomena that appear to be linked to memory formation and other functions of the central nervous system, and that can be observed in electroencephalographic recordings (EEG) during sleep. Manually identified spindle annotations in EEG recordings suffer from substantial intra- and inter-rater variability, even if raters have been highly trained, which reduces the reliability of spindle measures as a research and diagnostic tool. The Massive Online Data Annotation (MODA) project has recently addressed this problem by forming a consensus from multiple such rating experts, thus providing a corpus of spindle annotations of enhanced quality. Based on this dataset, we present a U-Net-type deep neural network model to automatically detect sleep spindles. Our model's performance exceeds that of the state-of-the-art detector and of most experts in the MODA dataset. We observed improved detection accuracy in subjects of all ages, including older individuals whose spindles are particularly challenging to detect reliably. Our results underline the potential of automated methods to do repetitive cumbersome tasks with super-human performance.