Abstract:We directly compare the persuasion capabilities of a frontier large language model (LLM; Claude Sonnet 3.5) against incentivized human persuaders in an interactive, real-time conversational quiz setting. In this preregistered, large-scale incentivized experiment, participants (quiz takers) completed an online quiz where persuaders (either humans or LLMs) attempted to persuade quiz takers toward correct or incorrect answers. We find that LLM persuaders achieved significantly higher compliance with their directional persuasion attempts than incentivized human persuaders, demonstrating superior persuasive capabilities in both truthful (toward correct answers) and deceptive (toward incorrect answers) contexts. We also find that LLM persuaders significantly increased quiz takers' accuracy, leading to higher earnings, when steering quiz takers toward correct answers, and significantly decreased their accuracy, leading to lower earnings, when steering them toward incorrect answers. Overall, our findings suggest that AI's persuasion capabilities already exceed those of humans that have real-money bonuses tied to performance. Our findings of increasingly capable AI persuaders thus underscore the urgency of emerging alignment and governance frameworks.
Abstract:As we all know, writing scientific papers together with our beloved colleagues is a truly remarkable experience (partially): endless discussions about the same useless paragraph over and over again, followed by long days and long nights -- both at the same time. What a wonderful ride it is! What a beautiful life we have. But wait, there's one tiny little problem that utterly shatters the peace, turning even renowned scientists into bloodthirsty monsters: author order. The reason is that, contrary to widespread opinion, it's not the font size that matters, but the way things are ordered. Of course, this is a fairly well-known fact among scientists all across the planet (and beyond) and explains clearly why we regularly have to read about yet another escalated paper submission in local police reports. In this paper, we take an important step backwards to tackle this issue by solving the so-called author ordering problem (AOP) once and for all. Specifically, we propose AMOR, a system that replaces silly constructs like co-first or co-middle authorship with a simple yet easy probabilistic approach based on random shuffling of the author list at viewing time. In addition to AOP, we also solve the ambiguous author ordering citation problem} (AAOCP) on the fly. Stop author violence, be human.