Abstract:We directly compare the persuasion capabilities of a frontier large language model (LLM; Claude Sonnet 3.5) against incentivized human persuaders in an interactive, real-time conversational quiz setting. In this preregistered, large-scale incentivized experiment, participants (quiz takers) completed an online quiz where persuaders (either humans or LLMs) attempted to persuade quiz takers toward correct or incorrect answers. We find that LLM persuaders achieved significantly higher compliance with their directional persuasion attempts than incentivized human persuaders, demonstrating superior persuasive capabilities in both truthful (toward correct answers) and deceptive (toward incorrect answers) contexts. We also find that LLM persuaders significantly increased quiz takers' accuracy, leading to higher earnings, when steering quiz takers toward correct answers, and significantly decreased their accuracy, leading to lower earnings, when steering them toward incorrect answers. Overall, our findings suggest that AI's persuasion capabilities already exceed those of humans that have real-money bonuses tied to performance. Our findings of increasingly capable AI persuaders thus underscore the urgency of emerging alignment and governance frameworks.
Abstract:Over the last years, advancements in deep learning models for computer vision have led to a dramatic improvement in their image classification accuracy. However, models with a higher accuracy in the task they were trained on do not necessarily develop better image representations that allow them to also perform better in other tasks they were not trained on. In order to investigate the representation learning capabilities of prominent high-performing computer vision models, we investigated how well they capture various indices of perceptual similarity from large-scale behavioral datasets. We find that higher image classification accuracy rates are not associated with a better performance on these datasets, and in fact we observe no improvement in performance since GoogLeNet (released 2015) and VGG-M (released 2014). We speculate that more accurate classification may result from hyper-engineering towards very fine-grained distinctions between highly similar classes, which does not incentivize the models to capture overall perceptual similarities.