University of Massachuetts Amherst
Abstract:Meta reinforcement learning (meta-RL) methods such as RL$^2$ have emerged as promising approaches for learning data-efficient RL algorithms tailored to a given task distribution. However, these RL algorithms struggle with long-horizon tasks and out-of-distribution tasks since they rely on recurrent neural networks to process the sequence of experiences instead of summarizing them into general RL components such as value functions. Moreover, even transformers have a practical limit to the length of histories they can efficiently reason about before training and inference costs become prohibitive. In contrast, traditional RL algorithms are data-inefficient since they do not leverage domain knowledge, but they do converge to an optimal policy as more data becomes available. In this paper, we propose RL$^3$, a principled hybrid approach that combines traditional RL and meta-RL by incorporating task-specific action-values learned through traditional RL as an input to the meta-RL neural network. We show that RL$^3$ earns greater cumulative reward on long-horizon and out-of-distribution tasks compared to RL$^2$, while maintaining the efficiency of the latter in the short term. Experiments are conducted on both custom and benchmark discrete domains from the meta-RL literature that exhibit a range of short-term, long-term, and complex dependencies.
Abstract:Model-based reinforcement learning promises to learn an optimal policy from fewer interactions with the environment compared to model-free reinforcement learning by learning an intermediate model of the environment in order to predict future interactions. When predicting a sequence of interactions, the rollout length, which limits the prediction horizon, is a critical hyperparameter as accuracy of the predictions diminishes in the regions that are further away from real experience. As a result, with a longer rollout length, an overall worse policy is learned in the long run. Thus, the hyperparameter provides a trade-off between quality and efficiency. In this work, we frame the problem of tuning the rollout length as a meta-level sequential decision-making problem that optimizes the final policy learned by model-based reinforcement learning given a fixed budget of environment interactions by adapting the hyperparameter dynamically based on feedback from the learning process, such as accuracy of the model and the remaining budget of interactions. We use model-free deep reinforcement learning to solve the meta-level decision problem and demonstrate that our approach outperforms common heuristic baselines on two well-known reinforcement learning environments.
Abstract:Both pedestrian and robot comfort are of the highest priority whenever a robot is placed in an environment containing human beings. In the case of pedestrian-unaware mobile robots this desire for safety leads to the freezing robot problem, where a robot confronted with a large dynamic group of obstacles (such as a crowd of pedestrians) would determine all forward navigation unsafe causing the robot to stop in place. In order to navigate in a socially compliant manner while avoiding the freezing robot problem we are interested in understanding the flow of pedestrians in crowded scenarios. By treating the pedestrians in the crowd as particles moved along by the crowd itself we can model the system as a time dependent flow field. From this flow field we can extract different flow segments that reflect the motion patterns emerging from the crowd. These motion patterns can then be accounted for during the control and navigation of a mobile robot allowing it to move safely within the flow of the crowd to reach a desired location within or beyond the flow. We combine flow-field extraction with a discrete heuristic search to create Flow-Informed path planning (FIPP). We provide empirical results showing that when compared against a trajectory-rollout local path planner, a robot using FIPP was able not only to reach its goal more quickly but also was shown to be more socially compliant than a robot using traditional techniques both in simulation and on real robots.
Abstract:We present a novel framework for causal explanations of stochastic, sequential decision-making systems. Building on the well-studied structural causal model paradigm for causal reasoning, we show how to identify semantically distinct types of explanations for agent actions using a single unified approach. We provide results on the generality of this framework, run time bounds, and offer several approximate techniques. Finally, we discuss several qualitative scenarios that illustrate the framework's flexibility and efficacy.
Abstract:Robots deployed in the real world over extended periods of time need to reason about unexpected failures, learn to predict them, and to proactively take actions to avoid future failures. Existing approaches for competence-aware planning are either model-based, requiring explicit enumeration of known failure modes, or purely statistical, using state- and location-specific failure statistics to infer competence. We instead propose a structured model-free approach to competence-aware planning by reasoning about plan execution failures due to errors in perception, without requiring a-priori enumeration of failure modes or requiring location-specific failure statistics. We introduce competence-aware path planning via introspective perception (CPIP), a Bayesian framework to iteratively learn and exploit task-level competence in novel deployment environments. CPIP factorizes the competence-aware planning problem into two components. First, perception errors are learned in a model-free and location-agnostic setting via introspective perception prior to deployment in novel environments. Second, during actual deployments, the prediction of task-level failures is learned in a context-aware setting. Experiments in a simulation show that the proposed CPIP approach outperforms the frequentist baseline in multiple mobile robot tasks, and is further validated via real robot experiments in an environment with perceptually challenging obstacles and terrain.
Abstract:Autonomous systems often operate in environments where the behavior of multiple agents is coordinated by a shared global state. Reliable estimation of the global state is thus critical for successfully operating in a multi-agent setting. We introduce agent-aware state estimation -- a framework for calculating indirect estimations of state given observations of the behavior of other agents in the environment. We also introduce transition-independent agent-aware state estimation -- a tractable class of agent-aware state estimation -- and show that it allows the speed of inference to scale linearly with the number of agents in the environment. As an example, we model traffic light classification in instances of complete loss of direct observation. By taking into account observations of vehicular behavior from multiple directions of traffic, our approach exhibits accuracy higher than that of existing traffic light-only HMM methods on a real-world autonomous vehicle data set under a variety of simulated occlusion scenarios.
Abstract:Agents operating in unstructured environments often produce negative side effects (NSE), which are difficult to identify at design time. While the agent can learn to mitigate the side effects from human feedback, such feedback is often expensive and the rate of learning is sensitive to the agent's state representation. We examine how humans can assist an agent, beyond providing feedback, and exploit their broader scope of knowledge to mitigate the impacts of NSE. We formulate this problem as a human-agent team with decoupled objectives. The agent optimizes its assigned task, during which its actions may produce NSE. The human shapes the environment through minor reconfiguration actions so as to mitigate the impacts of the agent's side effects, without affecting the agent's ability to complete its assigned task. We present an algorithm to solve this problem and analyze its theoretical properties. Through experiments with human subjects, we assess the willingness of users to perform minor environment modifications to mitigate the impacts of NSE. Empirical evaluation of our approach shows that the proposed framework can successfully mitigate NSE, without affecting the agent's ability to complete its assigned task.
Abstract:Fair clustering is the process of grouping similar entities together, while satisfying a mathematically well-defined fairness metric as a constraint. Due to the practical challenges in precise model specification, the prescribed fairness constraints are often incomplete and act as proxies to the intended fairness requirement, leading to biased outcomes when the system is deployed. We examine how to identify the intended fairness constraint for a problem based on limited demonstrations from an expert. Each demonstration is a clustering over a subset of the data. We present an algorithm to identify the fairness metric from demonstrations and generate clusters using existing off-the-shelf clustering techniques, and analyze its theoretical properties. To extend our approach to novel fairness metrics for which clustering algorithms do not currently exist, we present a greedy method for clustering. Additionally, we investigate how to generate interpretable solutions using our approach. Empirical evaluation on three real-world datasets demonstrates the effectiveness of our approach in quickly identifying the underlying fairness and interpretability constraints, which are then used to generate fair and interpretable clusters.
Abstract:As robotic teammates become more common in society, people will assess the robots' roles in their interactions along many dimensions. One such dimension is effectiveness: people will ask whether their robotic partners are trustworthy and effective collaborators. This begs a crucial question: how can we quantitatively measure the helpfulness of a robotic partner for a given task at hand? This paper seeks to answer this question with regards to the interactive robot's decision making. We describe a clear, concise, and task-oriented metric applicable to many different planning and execution paradigms. The proposed helpfulness metric is fundamental to assessing the benefit that a partner has on a team for a given task. In this paper, we define helpfulness, illustrate it on concrete examples from a variety of domains, discuss its properties and ramifications for planning interactions with humans, and present preliminary results.
Abstract:Autonomous agents acting in the real-world often operate based on models that ignore certain aspects of the environment. The incompleteness of any given model---handcrafted or machine acquired---is inevitable due to practical limitations of any modeling technique for complex real-world settings. Due to the limited fidelity of its model, an agent's actions may have unexpected, undesirable consequences during execution. Learning to recognize and avoid such negative side effects of the agent's actions is critical to improving the safety and reliability of autonomous systems. This emerging research topic is attracting increased attention due to the increased deployment of AI systems and their broad societal impacts. This article provides a comprehensive overview of different forms of negative side effects and the recent research efforts to address them. We identify key characteristics of negative side effects, highlight the challenges in avoiding negative side effects, and discuss recently developed approaches, contrasting their benefits and limitations. We conclude with a discussion of open questions and suggestions for future research directions.