Abstract:Post-training alignment of diffusion models relies on simplified signals, such as scalar rewards or binary preferences. This limits alignment with complex human expertise, which is hierarchical and fine-grained. To address this, we first construct a hierarchical, fine-grained evaluation criteria with domain experts, which decomposes image quality into multiple positive and negative attributes organized in a tree structure. Building on this, we propose a two-stage alignment framework. First, we inject domain knowledge to an auxiliary diffusion model via Supervised Fine-Tuning. Second, we introduce Complex Preference Optimization (CPO) that extends DPO to align the target diffusion to our non-binary, hierarchical criteria. Specifically, we reformulate the alignment problem to simultaneously maximize the probability of positive attributes while minimizing the probability of negative attributes with the auxiliary diffusion. We instantiate our approach in the domain of painting generation and conduct CPO training with an annotated dataset of painting with fine-grained attributes based on our criteria. Extensive experiments demonstrate that CPO significantly enhances generation quality and alignment with expertise, opening new avenues for fine-grained criteria alignment.




Abstract:Generative AI faces many challenges when entering the product design workflow, such as interface usability and interaction patterns. Therefore, based on design thinking and design process, we developed the DesignGPT multi-agent collaboration framework, which uses artificial intelligence agents to simulate the roles of different positions in the design company and allows human designers to collaborate with them in natural language. Experimental results show that compared with separate AI tools, DesignGPT improves the performance of designers, highlighting the potential of applying multi-agent systems that integrate design domain knowledge to product scheme design.