Abstract:The combination of audio and vision has long been a topic of interest in the multi-modal community. Recently, a new audio-visual segmentation (AVS) task has been introduced, aiming to locate and segment the sounding objects in a given video. This task demands audio-driven pixel-level scene understanding for the first time, posing significant challenges. In this paper, we propose AVSegFormer, a novel framework for AVS tasks that leverages the transformer architecture. Specifically, we introduce audio queries and learnable queries into the transformer decoder, enabling the network to selectively attend to interested visual features. Besides, we present an audio-visual mixer, which can dynamically adjust visual features by amplifying relevant and suppressing irrelevant spatial channels. Additionally, we devise an intermediate mask loss to enhance the supervision of the decoder, encouraging the network to produce more accurate intermediate predictions. Extensive experiments demonstrate that AVSegFormer achieves state-of-the-art results on the AVS benchmark. The code is available at https://github.com/vvvb-github/AVSegFormer.
Abstract:In this report, we present our champion solution to the WSDM2023 Toloka Visual Question Answering (VQA) Challenge. Different from the common VQA and visual grounding (VG) tasks, this challenge involves a more complex scenario, i.e. inferring and locating the object implicitly specified by the given interrogative question. For this task, we leverage ViT-Adapter, a pre-training-free adapter network, to adapt multi-modal pre-trained Uni-Perceiver for better cross-modal localization. Our method ranks first on the leaderboard, achieving 77.5 and 76.347 IoU on public and private test sets, respectively. It shows that ViT-Adapter is also an effective paradigm for adapting the unified perception model to vision-language downstream tasks. Code and models will be released at https://github.com/czczup/ViT-Adapter/tree/main/wsdm2023.