Abstract:Rapid advancements in text-to-3D generation require robust and scalable evaluation metrics that align closely with human judgment, a need unmet by current metrics such as PSNR and CLIP, which require ground-truth data or focus only on prompt fidelity. To address this, we introduce Gen3DEval, a novel evaluation framework that leverages vision large language models (vLLMs) specifically fine-tuned for 3D object quality assessment. Gen3DEval evaluates text fidelity, appearance, and surface quality by analyzing 3D surface normals, without requiring ground-truth comparisons, bridging the gap between automated metrics and user preferences. Compared to state-of-the-art task-agnostic models, Gen3DEval demonstrates superior performance in user-aligned evaluations, placing it as a comprehensive and accessible benchmark for future research on text-to-3D generation. The project page can be found here: \href{https://shalini-maiti.github.io/gen3deval.github.io/}{https://shalini-maiti.github.io/gen3deval.github.io/}.
Abstract:Large Vision-Language Models (LVLMs) struggle with puzzles, which require precise perception, rule comprehension, and logical reasoning. Assessing and enhancing their performance in this domain is crucial, as it reflects their ability to engage in structured reasoning - an essential skill for real-world problem-solving. However, existing benchmarks primarily evaluate pre-trained models without additional training or fine-tuning, often lack a dedicated focus on reasoning, and fail to establish a systematic evaluation framework. To address these limitations, we introduce VGRP-Bench, a Visual Grid Reasoning Puzzle Benchmark featuring 20 diverse puzzles. VGRP-Bench spans multiple difficulty levels, and includes extensive experiments not only on existing chat LVLMs (e.g., GPT-4o), but also on reasoning LVLMs (e.g., Gemini-Thinking). Our results reveal that even the state-of-the-art LVLMs struggle with these puzzles, highlighting fundamental limitations in their puzzle-solving capabilities. Most importantly, through systematic experiments, we identify and analyze key factors influencing LVLMs' puzzle-solving performance, including the number of clues, grid size, and rule complexity. Furthermore, we explore two Supervised Fine-Tuning (SFT) strategies that can be used in post-training: SFT on solutions (S-SFT) and SFT on synthetic reasoning processes (R-SFT). While both methods significantly improve performance on trained puzzles, they exhibit limited generalization to unseen ones. We will release VGRP-Bench to facilitate further research on LVLMs for complex, real-world problem-solving. Project page: https://yufan-ren.com/subpage/VGRP-Bench/.