Abstract:Masked Image Modeling (MIM) is a self-supervised learning technique that involves masking portions of an image, such as pixels, patches, or latent representations, and training models to predict the missing information using the visible context. This approach has emerged as a cornerstone in self-supervised learning, unlocking new possibilities in visual understanding by leveraging unannotated data for pre-training. In remote sensing, MIM addresses challenges such as incomplete data caused by cloud cover, occlusions, and sensor limitations, enabling applications like cloud removal, multi-modal data fusion, and super-resolution. By synthesizing and critically analyzing recent advancements, this survey (MIMRS) is a pioneering effort to chart the landscape of mask image modeling in remote sensing. We highlight state-of-the-art methodologies, applications, and future research directions, providing a foundational review to guide innovation in this rapidly evolving field.
Abstract:The rapid expansion of remote sensing image archives demands the development of strong and efficient techniques for content-based image retrieval (RS-CBIR). This paper presents REJEPA (Retrieval with Joint-Embedding Predictive Architecture), an innovative self-supervised framework designed for unimodal RS-CBIR. REJEPA utilises spatially distributed context token encoding to forecast abstract representations of target tokens, effectively capturing high-level semantic features and eliminating unnecessary pixel-level details. In contrast to generative methods that focus on pixel reconstruction or contrastive techniques that depend on negative pairs, REJEPA functions within feature space, achieving a reduction in computational complexity of 40-60% when compared to pixel-reconstruction baselines like Masked Autoencoders (MAE). To guarantee strong and varied representations, REJEPA incorporates Variance-Invariance-Covariance Regularisation (VICReg), which prevents encoder collapse by promoting feature diversity and reducing redundancy. The method demonstrates an estimated enhancement in retrieval accuracy of 5.1% on BEN-14K (S1), 7.4% on BEN-14K (S2), 6.0% on FMoW-RGB, and 10.1% on FMoW-Sentinel compared to prominent SSL techniques, including CSMAE-SESD, Mask-VLM, SatMAE, ScaleMAE, and SatMAE++, on extensive RS benchmarks BEN-14K (multispectral and SAR data), FMoW-RGB and FMoW-Sentinel. Through effective generalisation across sensor modalities, REJEPA establishes itself as a sensor-agnostic benchmark for efficient, scalable, and precise RS-CBIR, addressing challenges like varying resolutions, high object density, and complex backgrounds with computational efficiency.
Abstract:In this research, we deal with the problem of visual question answering (VQA) in remote sensing. While remotely sensed images contain information significant for the task of identification and object detection, they pose a great challenge in their processing because of high dimensionality, volume and redundancy. Furthermore, processing image information jointly with language features adds additional constraints, such as mapping the corresponding image and language features. To handle this problem, we propose a cross attention based approach combined with information maximization. The CNN-LSTM based cross-attention highlights the information in the image and language modalities and establishes a connection between the two, while information maximization learns a low dimensional bottleneck layer, that has all the relevant information required to carry out the VQA task. We evaluate our method on two VQA remote sensing datasets of different resolutions. For the high resolution dataset, we achieve an overall accuracy of 79.11% and 73.87% for the two test sets while for the low resolution dataset, we achieve an overall accuracy of 85.98%.