Abstract:Estimating physically accurate, simulation-ready garments from a single image is challenging due to the absence of image-to-physics datasets and the ill-posed nature of this problem. Prior methods either require multi-view capture and expensive differentiable simulation or predict only garment geometry without the material properties required for realistic simulation. We propose a feed-forward framework that sidesteps these limitations by first fine-tuning a vision-language model to infer material composition and fabric attributes from real images, and then training a lightweight predictor that maps these attributes to the corresponding physical fabric parameters using a small dataset of material-physics measurements. Our approach introduces two new datasets (FTAG and T2P) and delivers simulation-ready garments from a single image without iterative optimization. Experiments show that our estimator achieves superior accuracy in material composition estimation and fabric attribute prediction, and by passing them through our physics parameter estimator, we further achieve higher-fidelity simulations compared to state-of-the-art image-to-garment methods.
Abstract:Polysomnography (PSG), the current gold standard method for monitoring and detecting sleep disorders, is cumbersome and costly. At-home testing solutions, known as home sleep apnea testing (HSAT), exist. However, they are contact-based, a feature which limits the ability of some patient populations to tolerate testing and discourages widespread deployment. Previous work on non-contact sleep monitoring for sleep apnea detection either estimates respiratory effort using radar or nasal airflow using a thermal camera, but has not compared the two or used them together. We conducted a study on 10 participants, ages 34 - 78, with suspected sleep disorders using a hardware setup with a synchronized radar and thermal camera. We show the first comparison of radar and thermal imaging for sleep monitoring, and find that our thermal imaging method outperforms radar significantly. Our thermal imaging method detects apneas with an accuracy of 0.99, a precision of 0.68, a recall of 0.74, an F1 score of 0.71, and an intra-class correlation of 0.70; our radar method detects apneas with an accuracy of 0.83, a precision of 0.13, a recall of 0.86, an F1 score of 0.22, and an intra-class correlation of 0.13. We also present a novel proposal for classifying obstructive and central sleep apnea by leveraging a multimodal setup. This method could be used accurately detect and classify apneas during sleep with non-contact sensors, thereby improving diagnostic capacities in patient populations unable to tolerate current technology.