Abstract:Hierarchical Text Classification (HTC) has recently gained traction given the ability to handle complex label hierarchy. This has found applications in domains like E- commerce, customer care and medicine industry among other real-world applications. Existing HTC models either encode label hierarchy separately and mix it with text encoding or guide the label hierarchy structure in the text encoder. Both approaches capture different characteristics of label hierarchy and are complementary to each other. In this paper, we propose a Hierarchical Text Classification using Contrastive Learning Informed Path guided hierarchy (HTC-CLIP), which learns hierarchy-aware text representation and text informed path guided hierarchy representation using contrastive learning. During the training of HTC-CLIP, we learn two different sets of class probabilities distributions and during inference, we use the pooled output of both probabilities for each class to get the best of both representations. Our results show that the two previous approaches can be effectively combined into one architecture to achieve improved performance. Tests on two public benchmark datasets showed an improvement of 0.99 - 2.37% in Macro F1 score using HTC-CLIP over the existing state-of-the-art models.
Abstract:Customer care is an essential pillar of the e-commerce shopping experience with companies spending millions of dollars each year, employing automation and human agents, across geographies (like US, Canada, Mexico, Chile), channels (like Chat, Interactive Voice Response (IVR)), and languages (like English, Spanish). SOTA pre-trained models like multilingual-BERT, fine-tuned on annotated data have shown good performance in downstream tasks relevant to Customer Care. However, model performance is largely subject to the availability of sufficient annotated domain-specific data. Cross-domain availability of data remains a bottleneck, thus building an intent classifier that generalizes across domains (defined by channel, geography, and language) with only a few annotations, is of great practical value. In this paper, we propose an embedder-cum-classifier model architecture which extends state-of-the-art domain-specific models to other domains with only a few labeled samples. We adopt a supervised fine-tuning approach with isotropic regularizers to train a domain-specific sentence embedder and a multilingual knowledge distillation strategy to generalize this embedder across multiple domains. The trained embedder, further augmented with a simple linear classifier can be deployed for new domains. Experiments on Canada and Mexico e-commerce Customer Care dataset with few-shot intent detection show an increase in accuracy by 20-23% against the existing state-of-the-art pre-trained models.
Abstract:Transformers with linear attention offer significant computational advantages over softmax-based transformers but often suffer from degraded performance. The symmetric power (sympow) transformer, a particular type of linear transformer, addresses some of this performance gap by leveraging symmetric tensor embeddings, achieving comparable performance to softmax transformers. However, the finite capacity of the recurrent state in sympow transformers limits their ability to retain information, leading to performance degradation when scaling the training or evaluation context length. To address this issue, we propose the conformal-sympow transformer, which dynamically frees up capacity using data-dependent multiplicative gating and adaptively stores information using data-dependent rotary embeddings. Preliminary experiments on the LongCrawl64 dataset demonstrate that conformal-sympow overcomes the limitations of sympow transformers, achieving robust performance across scaled training and evaluation contexts.
Abstract:In this paper, we consider the tracking of arbitrary curvilinear geometric paths in three-dimensional output spaces of unmanned aerial vehicles (UAVs) without pre-specified timing requirements, commonly referred to as path-following problems, subjected to bounded inputs. Specifically, we propose a novel nonlinear path-following guidance law for a UAV that enables it to follow any smooth curvilinear path in three dimensions while accounting for the bounded control authority in the design. The proposed solution offers a general treatment of the path-following problem by removing the dependency on the path's geometry, which makes it applicable to paths with varying levels of complexity and smooth curvatures. Additionally, the proposed strategy draws inspiration from the pursuit guidance approach, which is known for its simplicity and ease of implementation. Theoretical analysis guarantees that the UAV converges to its desired path within a fixed time and remains on it irrespective of its initial configuration with respect to the path. Finally, the simulations demonstrate the merits and effectiveness of the proposed guidance strategy through a wide range of engagement scenarios, showcasing the UAV's ability to follow diverse curvilinear paths accurately.
Abstract:The "small agent, big world" frame offers a conceptual view that motivates the need for continual learning. The idea is that a small agent operating in a much bigger world cannot store all information that the world has to offer. To perform well, the agent must be carefully designed to ingest, retain, and eject the right information. To enable the development of performant continual learning agents, a number of synthetic environments have been proposed. However, these benchmarks suffer from limitations, including unnatural distribution shifts and a lack of fidelity to the "small agent, big world" framing. This paper aims to formalize two desiderata for the design of future simulated environments. These two criteria aim to reflect the objectives and complexity of continual learning in practical settings while enabling rapid prototyping of algorithms on a smaller scale.
Abstract:A default assumption in the design of reinforcement-learning algorithms is that a decision-making agent always explores to learn optimal behavior. In sufficiently complex environments that approach the vastness and scale of the real world, however, attaining optimal performance may in fact be an entirely intractable endeavor and an agent may seldom find itself in a position to complete the requisite exploration for identifying an optimal policy. Recent work has leveraged tools from information theory to design agents that deliberately forgo optimal solutions in favor of sufficiently-satisfying or satisficing solutions, obtained through lossy compression. Notably, such agents may employ fundamentally different exploratory decisions to learn satisficing behaviors more efficiently than optimal ones that are more data intensive. While supported by a rigorous corroborating theory, the underlying algorithm relies on model-based planning, drastically limiting the compatibility of these ideas with function approximation and high-dimensional observations. In this work, we remedy this issue by extending an agent that directly represents uncertainty over the optimal value function allowing it to both bypass the need for model-based planning and to learn satisficing policies. We provide simple yet illustrative experiments that demonstrate how our algorithm enables deep reinforcement-learning agents to achieve satisficing behaviors. In keeping with previous work on this setting for multi-armed bandits, we additionally find that our algorithm is capable of synthesizing optimal behaviors, when feasible, more efficiently than its non-information-theoretic counterpart.
Abstract:This article presents a three-dimensional nonlinear trajectory tracking control strategy for unmanned aerial vehicles (UAVs) in the presence of spatial constraints. As opposed to many existing control strategies, which do not consider spatial constraints, the proposed strategy considers spatial constraints on each degree of freedom movement of the UAV. Such consideration makes the design appealing for many practical applications, such as pipeline inspection, boundary tracking, etc. The proposed design accounts for the limited information about the inertia matrix, thereby affirming its inherent robustness against unmodeled dynamics and other imperfections. We rigorously show that the UAV will converge to its desired path by maintaining bounded position, orientation, and linear and angular speeds. Finally, we demonstrate the effectiveness of the proposed strategy through various numerical simulations.
Abstract:Loss of plasticity is a phenomenon where neural networks become more difficult to train during the course of learning. Continual learning algorithms seek to mitigate this effect by sustaining good predictive performance while maintaining network trainability. We develop new techniques for improving continual learning by first reconsidering how initialization can ensure trainability during early phases of learning. From this perspective, we derive new regularization strategies for continual learning that ensure beneficial initialization properties are better maintained throughout training. In particular, we investigate two new regularization techniques for continual learning: (i) Wasserstein regularization toward the initial weight distribution, which is less restrictive than regularizing toward initial weights; and (ii) regularizing weight matrix singular values, which directly ensures gradient diversity is maintained throughout training. We present an experimental analysis that shows these alternative regularizers can improve continual learning performance across a range of supervised learning tasks and model architectures. The alternative regularizers prove to be less sensitive to hyperparameters while demonstrating better training in individual tasks, sustaining trainability as new tasks arrive, and achieving better generalization performance.
Abstract:This paper addresses the pursuit-evasion problem involving three agents -- a purser, an evader, and a defender. We develop cooperative guidance laws for the evader-defender team that guarantee that the defender intercepts the pursuer before it reaches the vicinity of the evader. Unlike heuristic methods, optimal control, differential game formulation, and recently proposed time-constrained guidance techniques, we propose a geometric solution to safeguard the evader from the pursuer's incoming threat. The proposed strategy is computationally efficient and expected to be scalable as the number of agents increases. Another alluring feature of the proposed strategy is that the evader-defender team does not require the knowledge of the pursuer's strategy and that the pursuer's interception is guaranteed from arbitrary initial engagement geometries. We further show that the necessary error variables for the evader-defender team vanish within a time that can be exactly prescribed prior to the three-body engagement. Finally, we demonstrate the efficacy of the proposed cooperative defense strategy via simulation in diverse engagement scenarios.
Abstract:With the advent of high-quality speech synthesis, there is a lot of interest in controlling various prosodic attributes of speech. Speaking rate is an essential attribute towards modelling the expressivity of speech. In this work, we propose a novel approach to control the speaking rate for non-autoregressive TTS. We achieve this by conditioning the speaking rate inside the duration predictor, allowing implicit speaking rate control. We show the benefits of this approach by synthesising audio at various speaking rate factors and measuring the quality of speaking rate-controlled synthesised speech. Further, we study the effect of the speaking rate distribution of the training data towards effective rate control. Finally, we fine-tune a baseline pretrained TTS model to obtain speaking rate control TTS. We provide various analyses to showcase the benefits of using this proposed approach, along with objective as well as subjective metrics. We find that the proposed methods have higher subjective scores and lower speaker rate errors across many speaking rate factors over the baseline.