Abstract:Talking-head avatars are increasingly adopted in educational technology to deliver content with social presence and improved engagement. However, many recent talking-head generation (THG) methods rely on GPU-centric neural rendering, large training sets, or high-capacity diffusion models, which limits deployment in offline or resource-constrained learning environments. A deterministic and CPU-oriented THG framework is described, termed Symbolic Vedic Computation, that converts speech to a time-aligned phoneme stream, maps phonemes to a compact viseme inventory, and produces smooth viseme trajectories through symbolic coarticulation inspired by Vedic sutra Urdhva Tiryakbhyam. A lightweight 2D renderer performs region-of-interest (ROI) warping and mouth compositing with stabilization to support real-time synthesis on commodity CPUs. Experiments report synchronization accuracy, temporal stability, and identity consistency under CPU-only execution, alongside benchmarking against representative CPU-feasible baselines. Results indicate that acceptable lip-sync quality can be achieved while substantially reducing computational load and latency, supporting practical educational avatars on low-end hardware. GitHub: https://vineetkumarrakesh.github.io/vedicthg
Abstract:This study presents a novel approach for enhancing American Sign Language (ASL) recognition using Graph Convolutional Networks (GCNs) integrated with successive residual connections. The method leverages the MediaPipe framework to extract key landmarks from each hand gesture, which are then used to construct graph representations. A robust preprocessing pipeline, including translational and scale normalization techniques, ensures consistency across the dataset. The constructed graphs are fed into a GCN-based neural architecture with residual connections to improve network stability. The architecture achieves state-of-the-art results, demonstrating superior generalization capabilities with a validation accuracy of 99.14%.