Abstract:We propose a learning-based framework for efficient power allocation in ad hoc interference networks under episodic constraints. The problem of optimal power allocation -- for maximizing a given network utility metric -- under instantaneous constraints has recently gained significant popularity. Several learnable algorithms have been proposed to obtain fast, effective, and near-optimal performance. However, a more realistic scenario arises when the utility metric has to be optimized for an entire episode under time-coupled constraints. In this case, the instantaneous power needs to be regulated so that the given utility can be optimized over an entire sequence of wireless network realizations while satisfying the constraint at all times. Solving each instance independently will be myopic as the long-term constraint cannot modulate such a solution. Instead, we frame this as a constrained and sequential decision-making problem, and employ an actor-critic algorithm to obtain the constraint-aware power allocation at each step. We present experimental analyses to illustrate the effectiveness of our method in terms of superior episodic network-utility performance and its efficiency in terms of time and computational complexity.
Abstract:Computational offloading has become an enabling component for edge intelligence in mobile and smart devices. Existing offloading schemes mainly focus on mobile devices and servers, while ignoring the potential network congestion caused by tasks from multiple mobile devices, especially in wireless multi-hop networks. To fill this gap, we propose a low-overhead, congestion-aware distributed task offloading scheme by augmenting a distributed greedy framework with graph-based machine learning. In simulated wireless multi-hop networks with 20-110 nodes and a resource allocation scheme based on shortest path routing and contention-based link scheduling, our approach is demonstrated to be effective in reducing congestion or unstable queues under the context-agnostic baseline, while improving the execution latency over local computing.
Abstract:We propose a joint channel estimation and data detection algorithm for massive multilple-input multiple-output systems based on diffusion models. Our proposed method solves the blind inverse problem by sampling from the joint posterior distribution of the symbols and channels and computing an approximate maximum a posteriori estimation. To achieve this, we construct a diffusion process that models the joint distribution of the channels and symbols given noisy observations, and then run the reverse process to generate the samples. A unique contribution of the algorithm is to include the discrete prior distribution of the symbols and a learned prior for the channels. Indeed, this is key as it allows a more efficient exploration of the joint search space and, therefore, enhances the sampling process. Through numerical experiments, we demonstrate that our method yields a lower normalized mean squared error than competing approaches and reduces the pilot overhead.
Abstract:As wireless communication systems strive to improve spectral efficiency, there has been a growing interest in employing machine learning (ML)-based approaches for adaptive modulation and coding scheme (MCS) selection. In this paper, we introduce a new adaptive MCS selection framework for massive MIMO systems that operates without any feedback from users by solely relying on instantaneous uplink channel estimates. Our proposed method can effectively operate in multi-user scenarios where user feedback imposes excessive delay and bandwidth overhead. To learn the mapping between the user channel matrices and the optimal MCS level of each user, we develop a Convolutional Neural Network (CNN)-Long Short-Term Memory Network (LSTM)-based model and compare the performance with the state-of-the-art methods. Finally, we validate the effectiveness of our algorithm by evaluating it experimentally using real-world datasets collected from the RENEW massive MIMO platform.
Abstract:Backpressure (BP) routing is a well-established framework for distributed routing and scheduling in wireless multi-hop networks. However, the basic BP scheme suffers from poor end-to-end delay due to the drawbacks of slow startup, random walk, and the last packet problem. Biased BP with shortest path awareness can address the first two drawbacks, and sojourn time-based backlog metrics were proposed for the last packet problem. Furthermore, these BP variations require no additional signaling overhead in each time step compared to the basic BP. In this work, we further address three long-standing challenges associated with the aforementioned low-cost BP variations, including optimal scaling of the biases, bias maintenance under mobility, and incorporating sojourn time awareness into biased BP. Our analysis and experimental results show that proper scaling of biases can be achieved with the help of common link features, which can effectively reduce end-to-end delay of BP by mitigating the random walk of packets under low-to-medium traffic, including the last packet scenario. In addition, our low-overhead bias maintenance scheme is shown to be effective under mobility, and our bio-inspired sojourn time-aware backlog metric is demonstrated to be more efficient and effective for the last packet problem than existing approaches when incorporated into biased BP.
Abstract:Node features bolster graph-based learning when exploited jointly with network structure. However, a lack of nodal attributes is prevalent in graph data. We present a framework to recover completely missing node features for a set of graphs, where we only know the signals of a subset of graphs. Our approach incorporates prior information from both graph topology and existing nodal values. We demonstrate an example implementation of our framework where we assume that node features depend on local graph structure. Missing nodal values are estimated by aggregating known features from the most similar nodes. Similarity is measured through a node embedding space that preserves local topological features, which we train using a Graph AutoEncoder. We empirically show not only the accuracy of our feature estimation approach but also its value for downstream graph classification. Our success embarks on and implies the need to emphasize the relationship between node features and graph structure in graph-based learning.
Abstract:The myriad complex systems with multiway interactions motivate the extension of graph-based pairwise connections to higher-order relations. In particular, the simplicial complex has inspired generalizations of graph neural networks (GNNs) to simplicial complex-based models. Learning on such systems requires large amounts of data, which can be expensive or impossible to obtain. We propose data augmentation of simplicial complexes through both linear and nonlinear mixup mechanisms that return mixtures of existing labeled samples. In addition to traditional pairwise mixup, we present a convex clustering mixup approach for a data-driven relationship among several simplicial complexes. We theoretically demonstrate that the resultant synthetic simplicial complexes interpolate among existing data with respect to homomorphism densities. Our method is demonstrated on both synthetic and real-world datasets for simplicial complex classification.
Abstract:In this work, we propose data augmentation via pairwise mixup across subgroups to improve group fairness. Many real-world applications of machine learning systems exhibit biases across certain groups due to under-representation or training data that reflects societal biases. Inspired by the successes of mixup for improving classification performance, we develop a pairwise mixup scheme to augment training data and encourage fair and accurate decision boundaries for all subgroups. Data augmentation for group fairness allows us to add new samples of underrepresented groups to balance subpopulations. Furthermore, our method allows us to use the generalization ability of mixup to improve both fairness and accuracy. We compare our proposed mixup to existing data augmentation and bias mitigation approaches on both synthetic simulations and real-world benchmark fair classification data, demonstrating that we are able to achieve fair outcomes with robust if not improved accuracy.
Abstract:We propose a sampling algorithm to perform system identification from a set of input-output graph signal pairs. The dynamics of the systems we study are given by a partially known adjacency matrix and a generic parametric graph filter of unknown parameters. The methodology we employ is built upon the principles of annealed Langevin diffusion. This enables us to draw samples from the posterior distribution instead of following the classical approach of point estimation using maximum likelihood. We investigate how to harness the prior information inherent in a dataset of graphs of different sizes through the utilization of graph neural networks. We demonstrate, via numerical experiments involving both real-world and synthetic networks, that integrating prior knowledge into the estimation process enhances estimation performance.
Abstract:Analyzing network topologies and communication graphs plays a crucial role in contemporary network management. However, the absence of a cohesive approach leads to a challenging learning curve, heightened errors, and inefficiencies. In this paper, we introduce a novel approach to facilitate a natural-language-based network management experience, utilizing large language models (LLMs) to generate task-specific code from natural language queries. This method tackles the challenges of explainability, scalability, and privacy by allowing network operators to inspect the generated code, eliminating the need to share network data with LLMs, and concentrating on application-specific requests combined with general program synthesis techniques. We design and evaluate a prototype system using benchmark applications, showcasing high accuracy, cost-effectiveness, and the potential for further enhancements using complementary program synthesis techniques.