Abstract:Score distillation sampling has been pivotal for integrating diffusion models into generation of complex visuals. Despite impressive results it suffers from mode collapse and lack of diversity. To cope with this challenge, we leverage the gradient flow interpretation of score distillation to propose Repulsive Score Distillation (RSD). In particular, we propose a variational framework based on repulsion of an ensemble of particles that promotes diversity. Using a variational approximation that incorporates a coupling among particles, the repulsion appears as a simple regularization that allows interaction of particles based on their relative pairwise similarity, measured e.g., via radial basis kernels. We design RSD for both unconstrained and constrained sampling scenarios. For constrained sampling we focus on inverse problems in the latent space that leads to an augmented variational formulation, that strikes a good balance between compute, quality and diversity. Our extensive experiments for text-to-image generation, and inverse problems demonstrate that RSD achieves a superior trade-off between diversity and quality compared with state-of-the-art alternatives.
Abstract:We propose estimating Gaussian graphical models (GGMs) that are fair with respect to sensitive nodal attributes. Many real-world models exhibit unfair discriminatory behavior due to biases in data. Such discrimination is known to be exacerbated when data is equipped with pairwise relationships encoded in a graph. Additionally, the effect of biased data on graphical models is largely underexplored. We thus introduce fairness for graphical models in the form of two bias metrics to promote balance in statistical similarities across nodal groups with different sensitive attributes. Leveraging these metrics, we present Fair GLASSO, a regularized graphical lasso approach to obtain sparse Gaussian precision matrices with unbiased statistical dependencies across groups. We also propose an efficient proximal gradient algorithm to obtain the estimates. Theoretically, we express the tradeoff between fair and accurate estimated precision matrices. Critically, this includes demonstrating when accuracy can be preserved in the presence of a fairness regularizer. On top of this, we study the complexity of Fair GLASSO and demonstrate that our algorithm enjoys a fast convergence rate. Our empirical validation includes synthetic and real-world simulations that illustrate the value and effectiveness of our proposed optimization problem and iterative algorithm.
Abstract:We consider fair network topology inference from nodal observations. Real-world networks often exhibit biased connections based on sensitive nodal attributes. Hence, different subpopulations of nodes may not share or receive information equitably. We thus propose an optimization-based approach to accurately infer networks while discouraging biased edges. To this end, we present bias metrics that measure topological demographic parity to be applied as convex penalties, suitable for most optimization-based graph learning methods. Moreover, we encourage equitable treatment for any number of subpopulations of differing sizes. We validate our method on synthetic and real-world simulations using networks with both biased and unbiased connections.
Abstract:Repetitive DNA (repeats) poses significant challenges for accurate and efficient genome assembly and sequence alignment. This is particularly true for metagenomic data, where genome dynamics such as horizontal gene transfer, gene duplication, and gene loss/gain complicate accurate genome assembly from metagenomic communities. Detecting repeats is a crucial first step in overcoming these challenges. To address this issue, we propose GraSSRep, a novel approach that leverages the assembly graph's structure through graph neural networks (GNNs) within a self-supervised learning framework to classify DNA sequences into repetitive and non-repetitive categories. Specifically, we frame this problem as a node classification task within a metagenomic assembly graph. In a self-supervised fashion, we rely on a high-precision (but low-recall) heuristic to generate pseudo-labels for a small proportion of the nodes. We then use those pseudo-labels to train a GNN embedding and a random forest classifier to propagate the labels to the remaining nodes. In this way, GraSSRep combines sequencing features with pre-defined and learned graph features to achieve state-of-the-art performance in repeat detection. We evaluate our method using simulated and synthetic metagenomic datasets. The results on the simulated data highlight our GraSSRep's robustness to repeat attributes, demonstrating its effectiveness in handling the complexity of repeated sequences. Additionally, our experiments with synthetic metagenomic datasets reveal that incorporating the graph structure and the GNN enhances our detection performance. Finally, in comparative analyses, GraSSRep outperforms existing repeat detection tools with respect to precision and recall.
Abstract:We propose a novel algorithm for the support estimation of partially known Gaussian graphical models that incorporates prior information about the underlying graph. In contrast to classical approaches that provide a point estimate based on a maximum likelihood or a maximum a posteriori criterion using (simple) priors on the precision matrix, we consider a prior on the graph and rely on annealed Langevin diffusion to generate samples from the posterior distribution. Since the Langevin sampler requires access to the score function of the underlying graph prior, we use graph neural networks to effectively estimate the score from a graph dataset (either available beforehand or generated from a known distribution). Numerical experiments demonstrate the benefits of our approach.
Abstract:We propose a learning-based framework for efficient power allocation in ad hoc interference networks under episodic constraints. The problem of optimal power allocation -- for maximizing a given network utility metric -- under instantaneous constraints has recently gained significant popularity. Several learnable algorithms have been proposed to obtain fast, effective, and near-optimal performance. However, a more realistic scenario arises when the utility metric has to be optimized for an entire episode under time-coupled constraints. In this case, the instantaneous power needs to be regulated so that the given utility can be optimized over an entire sequence of wireless network realizations while satisfying the constraint at all times. Solving each instance independently will be myopic as the long-term constraint cannot modulate such a solution. Instead, we frame this as a constrained and sequential decision-making problem, and employ an actor-critic algorithm to obtain the constraint-aware power allocation at each step. We present experimental analyses to illustrate the effectiveness of our method in terms of superior episodic network-utility performance and its efficiency in terms of time and computational complexity.
Abstract:Computational offloading has become an enabling component for edge intelligence in mobile and smart devices. Existing offloading schemes mainly focus on mobile devices and servers, while ignoring the potential network congestion caused by tasks from multiple mobile devices, especially in wireless multi-hop networks. To fill this gap, we propose a low-overhead, congestion-aware distributed task offloading scheme by augmenting a distributed greedy framework with graph-based machine learning. In simulated wireless multi-hop networks with 20-110 nodes and a resource allocation scheme based on shortest path routing and contention-based link scheduling, our approach is demonstrated to be effective in reducing congestion or unstable queues under the context-agnostic baseline, while improving the execution latency over local computing.
Abstract:We propose a joint channel estimation and data detection algorithm for massive multilple-input multiple-output systems based on diffusion models. Our proposed method solves the blind inverse problem by sampling from the joint posterior distribution of the symbols and channels and computing an approximate maximum a posteriori estimation. To achieve this, we construct a diffusion process that models the joint distribution of the channels and symbols given noisy observations, and then run the reverse process to generate the samples. A unique contribution of the algorithm is to include the discrete prior distribution of the symbols and a learned prior for the channels. Indeed, this is key as it allows a more efficient exploration of the joint search space and, therefore, enhances the sampling process. Through numerical experiments, we demonstrate that our method yields a lower normalized mean squared error than competing approaches and reduces the pilot overhead.
Abstract:As wireless communication systems strive to improve spectral efficiency, there has been a growing interest in employing machine learning (ML)-based approaches for adaptive modulation and coding scheme (MCS) selection. In this paper, we introduce a new adaptive MCS selection framework for massive MIMO systems that operates without any feedback from users by solely relying on instantaneous uplink channel estimates. Our proposed method can effectively operate in multi-user scenarios where user feedback imposes excessive delay and bandwidth overhead. To learn the mapping between the user channel matrices and the optimal MCS level of each user, we develop a Convolutional Neural Network (CNN)-Long Short-Term Memory Network (LSTM)-based model and compare the performance with the state-of-the-art methods. Finally, we validate the effectiveness of our algorithm by evaluating it experimentally using real-world datasets collected from the RENEW massive MIMO platform.
Abstract:Backpressure (BP) routing is a well-established framework for distributed routing and scheduling in wireless multi-hop networks. However, the basic BP scheme suffers from poor end-to-end delay due to the drawbacks of slow startup, random walk, and the last packet problem. Biased BP with shortest path awareness can address the first two drawbacks, and sojourn time-based backlog metrics were proposed for the last packet problem. Furthermore, these BP variations require no additional signaling overhead in each time step compared to the basic BP. In this work, we further address three long-standing challenges associated with the aforementioned low-cost BP variations, including optimal scaling of the biases, bias maintenance under mobility, and incorporating sojourn time awareness into biased BP. Our analysis and experimental results show that proper scaling of biases can be achieved with the help of common link features, which can effectively reduce end-to-end delay of BP by mitigating the random walk of packets under low-to-medium traffic, including the last packet scenario. In addition, our low-overhead bias maintenance scheme is shown to be effective under mobility, and our bio-inspired sojourn time-aware backlog metric is demonstrated to be more efficient and effective for the last packet problem than existing approaches when incorporated into biased BP.